A137216
Erlang C queues type triangular sequence based on A122525.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 6, 9, 22, 41, 24, 64, 266, 708, 1486, 120, 625, 4536, 17457, 48088, 108129, 720, 7776, 100392, 563088, 2043864, 5709120, 13399176, 5040, 117649, 2739472, 22516209, 107972560, 375217945, 1053757584, 2544404617, 40320, 2097152, 89020752, 1076444064, 6831882992, 29566405440, 99420254352, 279663595232, 688833593904
Offset: 0
Triangle begins as:
1;
1, 1;
2, 2, 3;
6, 9, 22, 41;
24, 64, 266, 708, 1486;
120, 625, 4536, 17457, 48088, 108129;
720, 7776, 100392, 563088, 2043864, 5709120, 13399176;
-
T[n_, k_]:= If[k==0, n!, If[k==1, n^(n-1), (1/n)*(k^(n+1)*n^n - n!*(k-1)*Sum[n^j*k^j/j!, {j,0,n}])]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 06 2022 *)
-
@CachedFunction
def A137216(n, k):
if (k==0): return factorial(n)
elif (k==1): return n^(n-1)
else: return (1/n)*(k^(n+1)*n^n - factorial(n)*(k-1)*sum((n*k)^j/factorial(j) for j in (0..n)))
flatten([[A137216(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 06 2022
A066324
Number of endofunctions on n labeled points constructed from k rooted trees.
Original entry on oeis.org
1, 2, 2, 9, 12, 6, 64, 96, 72, 24, 625, 1000, 900, 480, 120, 7776, 12960, 12960, 8640, 3600, 720, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 43046721
Offset: 1
Triangle T(n,k) begins:
1;
2, 2;
9, 12, 6;
64, 96, 72, 24;
625, 1000, 900, 480, 120;
7776, 12960, 12960, 8640, 3600, 720;
117649, 201684, 216090, 164640, 88200, 30240, 5040;
...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.
-
T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 22 2012
-
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
-
T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011
A154372
Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
Offset: 0
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|1 1 ||0 1 ||0 1 | |1 1 |
|1 3 1 ||0 1 1 ||0 0 1 |... = |1 4 1 |
|1 6 5 1 ||0 1 3 1 ||0 0 1 1 | |1 12 9 1|
|... ||0 1 6 5 1 ||0 0 1 3 1| |... |
|... ||... ||... | | |
- _Peter Bala_, Jan 13 2015
-
/* As triangle */ [[(k+1)^(n-k)*Binomial(n,k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
-
T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)
A137227
Triangle T(n, k) = n^(n-1) * Fibonacci(k)^(n+1) - (n-1)! * (Fibonacci(k) - 1) * Sum_{j=0..n} (n*Fibonacci(k))^j/j!, with T(n, 0) = n! and T(n, 1) = n^(n-1), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 6, 9, 9, 22, 24, 64, 64, 266, 708, 120, 625, 625, 4536, 17457, 108129, 720, 7776, 7776, 100392, 563088, 5709120, 52517688, 5040, 117649, 117649, 2739472, 22516209, 375217945, 5489293264, 92757410569, 40320, 2097152, 2097152, 89020752, 1076444064, 29566405440, 688833593904, 18867973329344, 513683908057152
Offset: 0
Triangle begins as:
1;
1, 1;
2, 2, 2;
6, 9, 9, 22;
24, 64, 64, 266, 708;
120, 625, 625, 4536, 17457, 108129;
720, 7776, 7776, 100392, 563088, 5709120, 52517688;
5040, 117649, 117649, 2739472, 22516209, 375217945, 5489293264, 92757410569;
-
T[n_, k_]:= If[k==0, n!, If[k==1, n^(n-1), (1/n)*(Fibonacci[k]^(n+1)*n^n - n!*(Fibonacci[k] -1)*Sum[n^j*Fibonacci[k]^j/j!, {j,0,n}])]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 06 2022 *)
-
@CachedFunction
def A137227(n,k):
if (k==0): return factorial(n)
elif (k==1): return n^(n-1)
else: return (1/n)*(fibonacci(k)^(n+1)*n^n - factorial(n)*(fibonacci(k) -1)*sum((n*fibonacci(k))^j/factorial(j) for j in (0..n)))
flatten([[A137227(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 06 2022
Showing 1-4 of 4 results.
Comments