A060281
Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.
Original entry on oeis.org
1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
Offset: 1
Triangle T(n,k) begins:
1;
3, 1;
17, 9, 1;
142, 95, 18, 1;
1569, 1220, 305, 30, 1;
21576, 18694, 5595, 745, 45, 1;
355081, 334369, 113974, 18515, 1540, 63, 1;
6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From _Peter Luschny_, Mar 03 2009: (Start)
Tree polynomials (with offset 0):
t_0(y) = 1;
t_1(y) = y;
t_2(y) = 3*y + y^2;
t_3(y) = 17*y + 9*y^2 + y^3; (End)
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
- W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009
- Alois P. Heinz, Rows n = 1..141, flattened
- Julia Handl and Joshua Knowles, An Investigation of Representations and Operators for Evolutionary Data Clustering with a Variable Number of Clusters, in Parallel Problem Solving from Nature-PPSN IX, Lecture Notes in Computer Science, Volume 4193/2006, Springer-Verlag. [From _N. J. A. Sloane_, Jul 09 2009]
- D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- D. E. Knuth and B. Pittel, A recurrence related to trees, Proceedings of the American Mathematical Society, 105(2):335-349, 1989. [From _Peter Luschny_, Mar 03 2009]
- J. Riordan, Enumeration of Linear Graphs for Mappings of Finite Sets, Ann. Math. Stat., 33, No. 1, Mar. 1962, pp. 178-185.
- David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
-
A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
[A060281(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
-
with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # Len Smiley, Apr 03 2006
From Peter Luschny, Mar 03 2009: (Start)
T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
seq(print(coeff(p,z,i)*i!),i=0..8); (End)
-
t=Sum[n^(n-1) x^n/n!,{n,1,10}];
Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
-
@CachedFunction
def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Nov 06 2024
A350446
Number T(n,k) of endofunctions on [n] with exactly k cycles of length larger than 1; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 1, 3, 1, 16, 11, 125, 128, 3, 1296, 1734, 95, 16807, 27409, 2425, 15, 262144, 499400, 61054, 945, 4782969, 10346328, 1605534, 42280, 105, 100000000, 240722160, 44981292, 1706012, 11025, 2357947691, 6222652233, 1351343346, 67291910, 763875, 945
Offset: 0
Triangle T(n,k) begins:
1;
1;
3, 1;
16, 11;
125, 128, 3;
1296, 1734, 95;
16807, 27409, 2425, 15;
262144, 499400, 61054, 945;
4782969, 10346328, 1605534, 42280, 105;
100000000, 240722160, 44981292, 1706012, 11025;
2357947691, 6222652233, 1351343346, 67291910, 763875, 945;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
t:= proc(n) option remember; n^(n-1) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-i)*binomial(n-1, i-1)*(c(i)*x+t(i)), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
egf := k-> (LambertW(-x)-log(1+LambertW(-x)))^k/(exp(LambertW(-x))*k!):
A350446 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A350446(n, k), k=0..n/2)), n=0..10); # Mélika Tebni, Mar 23 2023
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
t[n_] := t[n] = n^(n - 1);
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
b[n - i]*Binomial[n - 1, i - 1]*(c[i]*x + t[i]), {i, 1, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
A225213
Triangular array read by rows. T(n,k) is the number of cycles in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n} that have length k; 1<=k<=n.
Original entry on oeis.org
1, 4, 1, 27, 9, 2, 256, 96, 32, 6, 3125, 1250, 500, 150, 24, 46656, 19440, 8640, 3240, 864, 120, 823543, 352947, 168070, 72030, 24696, 5880, 720, 16777216, 7340032, 3670016, 1720320, 688128, 215040, 46080, 5040
Offset: 1
1,
4, 1,
27, 9, 2,
256, 96, 32, 6,
3125, 1250, 500, 150, 24,
46656, 19440, 8640, 3240, 864, 120,
823543, 352947, 168070, 72030, 24696, 5880, 720
-
Table[Table[(j-1)!Binomial[n,j]n^(n-j),{j,1,n}],{n,1,8}]//Grid
A225723
Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 3, 12, 9, 17, 108, 72, 68, 142, 1280, 810, 680, 710, 1569, 18750, 11520, 9180, 8520, 9414, 21576, 326592, 196875, 152320, 134190, 131796, 151032, 355081, 6588344, 3919104, 2975000, 2544640, 2372328, 2416512, 2840648, 6805296
Offset: 1
Triangle T(n,k) begins:
1;
2, 3;
12, 9, 17;
108, 72, 68, 142;
1280, 810, 680, 710, 1569;
18750, 11520, 9180, 8520, 9414, 21576;
326592, 196875, 152320, 134190, 131796, 151032, 355081;
...
-
b:= n-> n!*add(n^(n-k-1)/(n-k)!, k=1..n):
T:= (n, k)-> binomial(n,k)*b(k)*(n-k)^(n-k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 13 2013
-
nn = 8; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy =
Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}];
Map[Select[#, # > 0 &] &,
Drop[Range[0, nn]! CoefficientList[
Series[Log[1/(1 - txy)]/(1 - tx), {x, 0, nn}], {x, y}],
1]] // Grid
A302581
a(n) = n! * [x^n] -exp(-n*x)*log(1 - x).
Original entry on oeis.org
0, 1, -3, 20, -186, 2249, -33360, 586172, -11901008, 274098393, -7060189120, 201092672604, -6275340884736, 212915635727313, -7803567334571008, 307245946117223700, -12933084380738398208, 579587518114690731601, -27550568677612746940416, 1384553892443352890245636
Offset: 0
-
Table[n! SeriesCoefficient[-Exp[-n x] Log[1 - x], {x, 0, n}], {n, 0, 19}]
Table[Sum[(-n)^(n - k) (k - 1)! Binomial[n, k], {k, 1, n}], {n, 0, 19}]
nmax = 20; CoefficientList[Series[-Log[1 - LambertW[x]]/(1 + LambertW[x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)
A308332
a(n) = n! * [x^n] 1/(1 - x)^exp(n*x).
Original entry on oeis.org
1, 1, 6, 60, 936, 21495, 681480, 28157451, 1455590528, 91689831225, 6907344210400, 612700433073707, 63107430169208832, 7455570223877314721, 999839697339310324224, 150885818035154310155625, 25434297819615665229168640, 4758031551536565527014516561
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 - x)^Exp[n x], {x, 0, n}], {n, 0, 17}]
A185070
Triangular array read by rows. T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} that have exactly k 3-cycles. n>=0, 0<=k<=floor(n/3).
Original entry on oeis.org
1, 1, 4, 25, 2, 224, 32, 2625, 500, 38056, 8560, 40, 657433, 164150, 1960, 13178880, 3526656, 71680, 300585601, 84389928, 2442720, 2240, 7683776000, 2232672000, 83328000, 224000, 217534555161, 64830707370, 2931500880, 14907200
Offset: 0
1;
1;
4;
25, 2;
224, 32;
2625, 500;
38056, 8560, 40;
657433, 164150, 1960;
13178880, 3526656, 71680;
300585601, 84389928, 2442720, 2240;
...
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t^3/3(y-1)]/(1-t),{x,0,nn}],{x,y}]//Grid
Showing 1-7 of 7 results.
Comments