cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A225723 Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 3, 12, 9, 17, 108, 72, 68, 142, 1280, 810, 680, 710, 1569, 18750, 11520, 9180, 8520, 9414, 21576, 326592, 196875, 152320, 134190, 131796, 151032, 355081, 6588344, 3919104, 2975000, 2544640, 2372328, 2416512, 2840648, 6805296
Offset: 1

Views

Author

Geoffrey Critzer, May 13 2013

Keywords

Comments

T(n,1) = n*(n-1)^(n-1) = A055897(n).
Row sums = A190314.
T(n,n) = A001865(n).
Sum_{k=1..n} T(n,k)*k = n^(n+1).

Examples

			Triangle T(n,k) begins:
       1;
       2,      3;
      12,      9,     17;
     108,     72,     68,    142;
    1280,    810,    680,    710,   1569;
   18750,  11520,   9180,   8520,   9414,  21576;
  326592, 196875, 152320, 134190, 131796, 151032, 355081;
  ...
		

Crossrefs

Cf. A225213.

Programs

  • Maple
    b:= n-> n!*add(n^(n-k-1)/(n-k)!, k=1..n):
    T:= (n, k)-> binomial(n,k)*b(k)*(n-k)^(n-k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, May 13 2013
  • Mathematica
    nn = 8; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy =
    Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}];
    Map[Select[#, # > 0 &] &,
      Drop[Range[0, nn]! CoefficientList[
         Series[Log[1/(1 - txy)]/(1 - tx), {x, 0, nn}], {x, y}],
       1]] // Grid

Formula

E.g.f.: log(1/(1 - A(x*y)))/(1 - A(x)) where A(x) is the e.g.f. for A000169.
T(n,k) = C(n,k)*A001865(k)*A000312(n-k). - Alois P. Heinz, May 13 2013
Showing 1-1 of 1 results.