A001865
Number of connected functions on n labeled nodes.
Original entry on oeis.org
1, 3, 17, 142, 1569, 21576, 355081, 6805296, 148869153, 3660215680, 99920609601, 2998836525312, 98139640241473, 3478081490967552, 132705415800984825, 5423640496274200576, 236389784118231290049, 10944997108429625524224, 536484538620663729658993
Offset: 1
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 112.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..380 (first 50 terms from T. D. Noe)
- H. Bergeron, E. M. F. Curado, J. P. Gazeau and L. M. C. S. Rodrigues, A note about combinatorial sequences and Incomplete Gamma function, arXiv preprint arXiv: 1309.6910 [math.CO], 2013.
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See pp. 8, 19.
- Camille Combe, A geometric and combinatorial exploration of Hochschild lattices, arXiv:2007.00048 [math.CO], 2020. See p. 22.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 37
- Leo Katz, Probability of indecomposability of a random mapping function, Ann. Math. Statist. 26, (1955), 512-517.
- John Riordan, Letter to N. J. A. Sloane, Aug. 1970
- Frank Schmidt and Rodica Simion, Card shuffling and a transformation on S_n, Aequationes Math. 44 (1992), no. 1, 11-34.
- Bernd Sturmfels and Ngoc Mai Tran, Combinatorial Types of Tropical Eigenvectors, arXiv:1105.5504 [math.CO], 2011-2012.
-
spec := [B, {A=Prod(Z,Set(A)), B=Cycle(A)}, labeled]; [seq(combstruct[count](spec,size=n), n=0..20)];
seq(simplify(GAMMA(n,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
-
t=Sum[n^(n-1)x^n/n!,{n,1,20}];
Range[0,20]! CoefficientList[Series[Log[1/(1-t)]+1,{x,0,20}],x] (* Geoffrey Critzer, Mar 12 2011 *)
f[n_] := Sum[n! n^(n - k - 1)/(n - k)!, {k, n}]; Array[f, 18] (* Robert G. Wilson v *)
a[n_] := Exp[n]*Gamma[n, n]; Table[a[n] // FunctionExpand, {n, 1, 18}] (* Jean-François Alcover, May 13 2013, after Vladeta Jovovic *)
-
a(n)=if(n<0,0,n!*sum(k=1,n,n^(n-k-1)/(n-k)!))
-
a(n)=(1/n)*sum(k=1,n,binomial(n,k)*(n-k)^(n-k)*k^k) \\ Paul D. Hanna, Jul 04 2013
-
N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, (k*x)^k/k!)))) \\ Seiichi Manyama, May 27 2019
-
from math import comb
def A001865(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n + n**(n-1) # Chai Wah Wu, Apr 25-26 2023
A063170
Schenker sums with n-th term.
Original entry on oeis.org
1, 2, 10, 78, 824, 10970, 176112, 3309110, 71219584, 1727242866, 46602156800, 1384438376222, 44902138752000, 1578690429731402, 59805147699103744, 2428475127395631750, 105224992014096760832, 4845866591896268695010, 236356356027029797011456
Offset: 0
Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)
a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) + 4*4*4*4.
G.f. = 1 + 2*x + 10*x^2 + 78*x^3 + 824*x^4 + 10970*x^5 + 176112*x^6 + ...
- D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, p. 123, Exercise Section 1.2.11.3 18.
- G. C. Greubel, Table of n, a(n) for n = 0..385
- Max Alekseyev, Recursion for A063170, answer to question on MathOverflow (2025).
- T. Amdeberhan, D. Callan, and V. Moll, p-adic analysis and combinatorics of truncated exponential sums, preprint, 2012.
- T. Amdeberhan, D. Callan and V. Moll, Valuations and combinatorics of truncated exponential sums, INTEGERS 13 (2013), #A21.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
- David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
- Marijke van Gans, Schenker sums
- Eric Weisstein, Exponential Sum Function.
-
seq(simplify(GAMMA(n+1,n)*exp(n)),n=0..20); # Vladeta Jovovic, Jul 21 2005
-
a[n_] := Round[ Gamma[n+1, n]*Exp[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 16 2012, after Vladeta Jovovic *)
a[ n_] := If[ n < 1, Boole[n == 0], n! Sum[ n^k / k!, {k, 0, n}]]; (* Michael Somos, Jun 05 2014 *)
a[ n_] := If[ n < 0, 0, n! Normal[ Exp[x] + x O[x]^n] /. x -> n]; (* Michael Somos, Jun 05 2014 *)
-
{a(n) = if( n<0, 0, n! * sum( k=0, n, n^k / k!))};
-
{a(n) = sum( k=0, n, binomial(n, k) * k^k * (n - k)^(n - k))}; /* Michael Somos, Jun 09 2004 */
-
for(n=0,17,print1(round(intnum(x=0,[oo,1],exp(-x)*(n+x)^n)),", ")) \\ Gerald McGarvey, Nov 17 2007
-
from math import comb
def A063170(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + (n**n<<1) if n else 1 # Chai Wah Wu, Apr 26 2023
-
10 for N=1 to 42: T=N^N: S=T
20 for K=N to 1 step -1: T/=N: T*=K: S+=T: next K
30 print N,S: next N
A066324
Number of endofunctions on n labeled points constructed from k rooted trees.
Original entry on oeis.org
1, 2, 2, 9, 12, 6, 64, 96, 72, 24, 625, 1000, 900, 480, 120, 7776, 12960, 12960, 8640, 3600, 720, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 43046721
Offset: 1
Triangle T(n,k) begins:
1;
2, 2;
9, 12, 6;
64, 96, 72, 24;
625, 1000, 900, 480, 120;
7776, 12960, 12960, 8640, 3600, 720;
117649, 201684, 216090, 164640, 88200, 30240, 5040;
...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.
-
T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 22 2012
-
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
-
T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011
A219706
Total number of nonrecurrent elements in all functions f:{1,2,...,n}->{1,2,...,n}.
Original entry on oeis.org
0, 0, 2, 30, 456, 7780, 150480, 3279234, 79775360, 2146962024, 63397843200, 2039301671110, 71007167075328, 2661561062560140, 106874954684266496, 4577827118698118250, 208369657238965616640, 10044458122057793060176, 511225397403604416921600
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->p+
[0, p[1]*j])((j-1)!*b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> (p-> n*p[1]-p[2])(add(b(j)*n^(n-j)
*binomial(n-1, j-1), j=0..n)):
seq(a(n), n=0..25); # Alois P. Heinz, May 22 2016
-
nn=20; f[list_] := Select[list,#>0&]; t=Sum[n^(n-1)x^n y^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[Series[D[1/(1-x Exp[t]), y]/.y->1, {x,0,nn}], x]
-
from math import comb
def A219706(n): return (n-1)*n**n-(sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) - (0 if n&1 else comb(n,m:=n>>1)*m**n) if n else 0 # Chai Wah Wu, Apr 26 2023
A225213
Triangular array read by rows. T(n,k) is the number of cycles in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n} that have length k; 1<=k<=n.
Original entry on oeis.org
1, 4, 1, 27, 9, 2, 256, 96, 32, 6, 3125, 1250, 500, 150, 24, 46656, 19440, 8640, 3240, 864, 120, 823543, 352947, 168070, 72030, 24696, 5880, 720, 16777216, 7340032, 3670016, 1720320, 688128, 215040, 46080, 5040
Offset: 1
1,
4, 1,
27, 9, 2,
256, 96, 32, 6,
3125, 1250, 500, 150, 24,
46656, 19440, 8640, 3240, 864, 120,
823543, 352947, 168070, 72030, 24696, 5880, 720
-
Table[Table[(j-1)!Binomial[n,j]n^(n-j),{j,1,n}],{n,1,8}]//Grid
A347993
a(n) = n! * Sum_{k=1..n} (-1)^(k+1) * n^(n-k) / (n-k)!.
Original entry on oeis.org
1, 2, 15, 136, 1645, 24336, 426979, 8658560, 199234809, 5128019200, 145969492471, 4552809182208, 154404454932325, 5656950010320896, 222655633595044875, 9369696305273798656, 419790650812640438641, 19950175280765680680960, 1002394352017754098219999, 53092232229227200348160000
Offset: 1
-
Table[n! Sum[(-1)^(k + 1) n^(n - k)/(n - k)!, {k, 1, n}], {n, 1, 20}]
nmax = 20; CoefficientList[Series[-LambertW[-x]/(1 - LambertW[-x]^2), {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = n! * sum(k=1, n, (-1)^(k+1)*n^(n-k)/(n-k)!); \\ Michel Marcus, Sep 23 2021
Showing 1-6 of 6 results.
Comments