A134095
Expansion of e.g.f. A(x) = 1/(1 - LambertW(-x)^2).
Original entry on oeis.org
1, 0, 2, 12, 120, 1480, 22320, 396564, 8118656, 188185680, 4871980800, 139342178140, 4363291266048, 148470651659928, 5455056815237120, 215238256785814500, 9077047768435752960, 407449611073696325536, 19396232794530856894464, 976025303642559490903980
Offset: 0
E.g.f.: A(x) = 1 + 0*x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1480*x^5/5! + ...
The formula A(x) = 1/(1 - LambertW(-x)^2) is illustrated by:
A(x) = 1/(1 - (x + x^2 + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + ...)^2).
-
seq(simplify(GAMMA(n+1,-n)*(-exp(-1))^n),n=0..20); # Vladeta Jovovic, Oct 17 2007
-
CoefficientList[Series[1/(1-LambertW[-x]^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
a[x0_] := x D[1/x Exp[x], {x, n}] x^n Exp[-x] /. x->x0
Table[a[n], {n, 0, 20}] (* Gerry Martens, May 05 2016 *)
-
{a(n)=sum(k=0,n,(n-k)^k*k^(n-k)*binomial(n,k))}
-
/* Generated by e.g.f. 1/(1 - LambertW(-x)^2 ): */
{a(n)=my(LambertW=-x*sum(k=0,n,(-x)^k*(k+1)^(k-1)/k!) +x*O(x^n)); n!*polcoeff(1/(1-subst(LambertW,x,-x)^2),n)}
A368951
Number of connected labeled graphs with n edges and n vertices and with loops allowed.
Original entry on oeis.org
1, 1, 2, 10, 79, 847, 11436, 185944, 3533720, 76826061, 1880107840, 51139278646, 1530376944768, 49965900317755, 1767387701671424, 67325805434672100, 2747849045156064256, 119626103584870552921, 5533218319763109888000, 270982462739224265922466
Offset: 0
From _Gus Wiseman_, Feb 12 2024: (Start)
The a(0) = 1 through a(3) = 10 loop-graphs:
{} {11} {11,12} {11,12,13}
{22,12} {11,12,23}
{11,13,23}
{22,12,13}
{22,12,23}
{22,13,23}
{33,12,13}
{33,12,23}
{33,13,23}
{12,13,23}
(End)
This is the connected covering case of
A014068.
Allowing any number of edges gives
A062740, connected case of
A322661.
This is the connected case of
A368597.
For at most n edges we have
A369197.
A000085 counts set partitions into singletons or pairs.
-
egf:= (L-> 1-L/2-log(1+L)/2-L^2/4)(LambertW(-x)):
a:= n-> n!*coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 10 2024
-
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(-log(1-t)/2 + t/2 - t^2/4 + 1))}
A090878
Numerator of Integral_{x=0..infinity} exp(-x)*(1+x/n)^n dx.
Original entry on oeis.org
2, 5, 26, 103, 2194, 1223, 472730, 556403, 21323986, 7281587, 125858034202, 180451625, 121437725363954, 595953719897, 26649932810926, 3211211914492699, 285050975993898158530, 549689343118061, 640611888918574971191834
Offset: 1
-
[Numerator((&+[Binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // G. C. Greubel, Feb 08 2019
-
f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x,0,Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}]
Table[Numerator[1 + Sum[If[k==0,1,Binomial[n,k]*(k/n)^k*((n-k)/n)^(n-k)], {k,0,n-1}]], {n,1,20}] (* G. C. Greubel, Feb 08 2019 *)
-
vector(20, n, numerator(sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ G. C. Greubel, Feb 08 2019
-
[numerator(sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # G. C. Greubel, Feb 08 2019
A120266
Numerator of Sum_{k=0..n} n^k/k!.
Original entry on oeis.org
2, 5, 13, 103, 1097, 1223, 47273, 556403, 10661993, 7281587, 62929017101, 7218065, 60718862681977, 595953719897, 13324966405463, 247016301114823, 28505097599389815853, 549689343118061, 320305944459287485595917
Offset: 1
The first few fractions are 2, 5, 13, 103/3, 1097/12, 1223/5, 47273/72, 556403/315, 10661993/2240, ... = A120266/A214401. - _Petros Hadjicostas_, May 12 2020
-
Numerator[Table[Sum[n^k/k!, {k,0,n}], {n,1,30}]]
A036505
Numerator of (n+1)^n/n!.
Original entry on oeis.org
1, 2, 9, 32, 625, 324, 117649, 131072, 4782969, 1562500, 25937424601, 35831808, 23298085122481, 110730297608, 4805419921875, 562949953421312, 48661191875666868481, 91507169819844, 104127350297911241532841, 640000000000000000, 865405750887126927009
Offset: 0
-
List([0..20], n -> NumeratorRat((n+1)^n/Factorial(n))); # Muniru A Asiru, Feb 12 2018
-
[Numerator((n+1)^n/Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Sep 10 2013
-
a:=n -> numer((n+1)^n/factorial(n)): A036505 := [seq(a(n), n=0..20)]; # Muniru A Asiru, Feb 12 2018
-
CoefficientList[Series[1/(1 + ProductLog[-x]), {x, 0, 21}], x] // Numerator // Rest (* Jean-François Alcover, Feb 04 2013, after Vladimir Kruchinin *)
-
my(x='x+O('x^30)); apply(x -> numerator(x), Vec(-1+1/(1+lambertw(-x)))) \\ G. C. Greubel and Michel Marcus, Feb 08 2019
-
[numerator((n+1)^n/factorial(n)) for n in (0..20)] # G. C. Greubel, Feb 08 2019
Original entry on oeis.org
1, 6, 51, 568, 7845, 129456, 2485567, 54442368, 1339822377, 36602156800, 1099126705611, 35986038303744, 1275815323139149, 48693140873545728, 1990581237014772375, 86778247940387209216, 4018626330009931930833, 197009947951733259436032, 10193206233792610863520867
Offset: 1
Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)
a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) = 568.
- D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, Reading, MA, 1.2.11.3 p. 116
-
Flatten[Range[0, 20]! CoefficientList[Series[D[1/(1 - y t), y] /. y -> 1, {x, 0, 20}], {x, y}]]
(* Second program: *)
a[n_] := Exp[n]*Gamma[n+1, n] - n^n; Array[a, 19] (* Jean-François Alcover, Jan 25 2018 *)
-
a(n)=sum(k=1,n,binomial(n,k)*n^(n-k)*k!) /* Michael Somos, Jun 09 2004 */
-
a(n)=sum(k=1,n,binomial(n,k)*(n-k)^(n-k)*k^k) \\ Paul D. Hanna, Jul 04 2013
-
a(n)=sum(k=0,n-1,n!/k!*n^k) \\ Ruud H.G. van Tol, Jan 14 2023
-
from math import comb
def A063169(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + n**n # Chai Wah Wu, Apr 25-26 2023
-
10 for N=1 to 42 : T=N^N : S=0
20 for K=N to 1 step -1 : T/=N : T*=K : S+=T : next K
30 print N,S : next N
A119029
Numerator of Sum_{k=1..n} n^(k-1)/k!.
Original entry on oeis.org
1, 2, 4, 25, 217, 203, 6743, 69511, 1184417, 728102, 5720654791, 601499, 4670663321629, 42568060798, 888330615353, 15438515749903, 1676770323947695709, 30538296012677, 16858207434636875406943
Offset: 1
The first few fractions are 1, 2, 4, 25/3, 217/12, 203/5, 6743/72, 69511/315, 1184417/2240, 728102/567, ... = A119029/A214401. - _Petros Hadjicostas_, May 12 2020
-
Numerator[Table[Sum[n^(k-1)/k!,{k,1,n}],{n,1,30}]]
A120267
Numerator of Sum_{k=1..n} n^k/k!.
Original entry on oeis.org
1, 4, 12, 100, 1085, 1218, 47201, 556088, 10659753, 7281020, 62927202701, 7217988, 60718623181177, 595952851172, 13324959230295, 247016251998448, 28505095507110827053, 549689328228186, 320305941258100632731917
Offset: 1
The first few fractions are 1, 4, 12, 100/3, 1085/12, 1218/5, 47201/72, 556088/315, 10659753/2240, 7281020/567, ... = A120267/A214401. - _Petros Hadjicostas_, May 12 2020
-
Numerator[Table[Sum[n^k/k!, {k,1,n}], {n,1,30}]]
A214402
Cancellation factor in reducing Sum_{k=0...n} n^k/k! to lowest terms.
Original entry on oeis.org
1, 2, 6, 8, 10, 144, 70, 128, 162, 6400, 22, 6220800, 26, 100352, 182250, 425984, 170, 429981696, 38, 163840000, 13502538, 317194240, 46, 247669456896, 31250, 1417674752, 15943230, 80564191232, 9802, 25076532510720000000, 62, 10737418240, 38196790434, 1241245548544
Offset: 1
-
Table[n!/Denominator[Sum[n^k/k!, {k, 0, n}]], {n, 1, 30}]
-
a(n) = n!/denominator(sum(k=0, n, n^k/k!)); \\ Michel Marcus, Apr 20 2021
A214401
Denominator of Sum_{k=0..n} n^k/k!.
Original entry on oeis.org
1, 1, 1, 3, 12, 5, 72, 315, 2240, 567, 1814400, 77, 239500800, 868725, 7175168, 49116375, 2092278988800, 14889875, 3201186852864000, 14849255421, 3783802880000, 3543572316375, 562000363888803840000, 2505147019375, 496358721386591551488
Offset: 1
-
Denominator[Table[Sum[n^k/k!, {k, 0, n}], {n, 1, 30}]]
-
a(n) = denominator(sum(k=0, n, n^k/k!)); \\ Michel Marcus, Apr 20 2021
Showing 1-10 of 24 results.
Comments