A120266 Numerator of Sum_{k=0..n} n^k/k!.
2, 5, 13, 103, 1097, 1223, 47273, 556403, 10661993, 7281587, 62929017101, 7218065, 60718862681977, 595953719897, 13324966405463, 247016301114823, 28505097599389815853, 549689343118061, 320305944459287485595917
Offset: 1
Examples
The first few fractions are 2, 5, 13, 103/3, 1097/12, 1223/5, 47273/72, 556403/315, 10661993/2240, ... = A120266/A214401. - _Petros Hadjicostas_, May 12 2020
Links
- Eric Weisstein, Exponential Sum Function.
Programs
-
Mathematica
Numerator[Table[Sum[n^k/k!, {k,0,n}], {n,1,30}]]
Formula
a(n) = numerator(Sum_{k=0..n} n^k/k!).
a(n) = A063170(n)/A214402(n) = (n!/A214402(n))*Sum_{k=0..n} n^k/k! for n > 0. - Jonathan Sondow, Jul 16 2012
Comments