A120266
Numerator of Sum_{k=0..n} n^k/k!.
Original entry on oeis.org
2, 5, 13, 103, 1097, 1223, 47273, 556403, 10661993, 7281587, 62929017101, 7218065, 60718862681977, 595953719897, 13324966405463, 247016301114823, 28505097599389815853, 549689343118061, 320305944459287485595917
Offset: 1
The first few fractions are 2, 5, 13, 103/3, 1097/12, 1223/5, 47273/72, 556403/315, 10661993/2240, ... = A120266/A214401. - _Petros Hadjicostas_, May 12 2020
-
Numerator[Table[Sum[n^k/k!, {k,0,n}], {n,1,30}]]
A119029
Numerator of Sum_{k=1..n} n^(k-1)/k!.
Original entry on oeis.org
1, 2, 4, 25, 217, 203, 6743, 69511, 1184417, 728102, 5720654791, 601499, 4670663321629, 42568060798, 888330615353, 15438515749903, 1676770323947695709, 30538296012677, 16858207434636875406943
Offset: 1
The first few fractions are 1, 2, 4, 25/3, 217/12, 203/5, 6743/72, 69511/315, 1184417/2240, 728102/567, ... = A119029/A214401. - _Petros Hadjicostas_, May 12 2020
-
Numerator[Table[Sum[n^(k-1)/k!,{k,1,n}],{n,1,30}]]
A214401
Denominator of Sum_{k=0..n} n^k/k!.
Original entry on oeis.org
1, 1, 1, 3, 12, 5, 72, 315, 2240, 567, 1814400, 77, 239500800, 868725, 7175168, 49116375, 2092278988800, 14889875, 3201186852864000, 14849255421, 3783802880000, 3543572316375, 562000363888803840000, 2505147019375, 496358721386591551488
Offset: 1
-
Denominator[Table[Sum[n^k/k!, {k, 0, n}], {n, 1, 30}]]
-
a(n) = denominator(sum(k=0, n, n^k/k!)); \\ Michel Marcus, Apr 20 2021
A129977
Numbers m such that A119029(m) = numerator(Sum_{k=1..m} m^(k-1)/k!) is prime.
Original entry on oeis.org
2, 17, 102, 112, 316, 447, 535, 820, 1396, 1475, 1650, 5575, 6486, 6832
Offset: 1
-
Do[ f=Numerator[ Sum[ n^(k-1)/k!, {k, 1, n} ] ]; If[ PrimeQ[f], Print[{n,f}] ], {n,1,316} ]
Select[Range[2000],PrimeQ[Numerator[Sum[#^(k-1)/k!,{k,#}]]]&] (* Harvey P. Dale, Jun 15 2019 *)
-
for( n=1,1000, if( ispseudoprime( numerator( sum( k=1,n,n^(k-1)/k!))), print1(n", "))) \\ M. F. Hasler, Jun 18 2007
Edited and extended (a(6)..a(8)) by
M. F. Hasler, Jun 18 2007
A129976
Numbers k such that the numerator of Sum_{j=0..k} k^j/j! is a prime number.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 10, 14, 21, 33, 36, 56, 68, 94, 378, 1943, 2389, 2710, 5455, 6804
Offset: 1
Sum_{j=0..4} 4^j/j! = 103/3. The numerator is a prime, hence 4 is in the sequence.
-
Do[ f=Numerator[Sum[n^k/k!,{k,0,n}]]; If[PrimeQ[f], Print[{n,f}]], {n, 1, 378}]
Showing 1-5 of 5 results.
Comments