A063170
Schenker sums with n-th term.
Original entry on oeis.org
1, 2, 10, 78, 824, 10970, 176112, 3309110, 71219584, 1727242866, 46602156800, 1384438376222, 44902138752000, 1578690429731402, 59805147699103744, 2428475127395631750, 105224992014096760832, 4845866591896268695010, 236356356027029797011456
Offset: 0
Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)
a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) + 4*4*4*4.
G.f. = 1 + 2*x + 10*x^2 + 78*x^3 + 824*x^4 + 10970*x^5 + 176112*x^6 + ...
- D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, p. 123, Exercise Section 1.2.11.3 18.
- G. C. Greubel, Table of n, a(n) for n = 0..385
- Max Alekseyev, Recursion for A063170, answer to question on MathOverflow (2025).
- T. Amdeberhan, D. Callan, and V. Moll, p-adic analysis and combinatorics of truncated exponential sums, preprint, 2012.
- T. Amdeberhan, D. Callan and V. Moll, Valuations and combinatorics of truncated exponential sums, INTEGERS 13 (2013), #A21.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
- David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
- Marijke van Gans, Schenker sums
- Eric Weisstein, Exponential Sum Function.
-
seq(simplify(GAMMA(n+1,n)*exp(n)),n=0..20); # Vladeta Jovovic, Jul 21 2005
-
a[n_] := Round[ Gamma[n+1, n]*Exp[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 16 2012, after Vladeta Jovovic *)
a[ n_] := If[ n < 1, Boole[n == 0], n! Sum[ n^k / k!, {k, 0, n}]]; (* Michael Somos, Jun 05 2014 *)
a[ n_] := If[ n < 0, 0, n! Normal[ Exp[x] + x O[x]^n] /. x -> n]; (* Michael Somos, Jun 05 2014 *)
-
{a(n) = if( n<0, 0, n! * sum( k=0, n, n^k / k!))};
-
{a(n) = sum( k=0, n, binomial(n, k) * k^k * (n - k)^(n - k))}; /* Michael Somos, Jun 09 2004 */
-
for(n=0,17,print1(round(intnum(x=0,[oo,1],exp(-x)*(n+x)^n)),", ")) \\ Gerald McGarvey, Nov 17 2007
-
from math import comb
def A063170(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + (n**n<<1) if n else 1 # Chai Wah Wu, Apr 26 2023
-
10 for N=1 to 42: T=N^N: S=T
20 for K=N to 1 step -1: T/=N: T*=K: S+=T: next K
30 print N,S: next N
A090878
Numerator of Integral_{x=0..infinity} exp(-x)*(1+x/n)^n dx.
Original entry on oeis.org
2, 5, 26, 103, 2194, 1223, 472730, 556403, 21323986, 7281587, 125858034202, 180451625, 121437725363954, 595953719897, 26649932810926, 3211211914492699, 285050975993898158530, 549689343118061, 640611888918574971191834
Offset: 1
-
[Numerator((&+[Binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // G. C. Greubel, Feb 08 2019
-
f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x,0,Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}]
Table[Numerator[1 + Sum[If[k==0,1,Binomial[n,k]*(k/n)^k*((n-k)/n)^(n-k)], {k,0,n-1}]], {n,1,20}] (* G. C. Greubel, Feb 08 2019 *)
-
vector(20, n, numerator(sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ G. C. Greubel, Feb 08 2019
-
[numerator(sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # G. C. Greubel, Feb 08 2019
A128433
Triangle, read by rows, T(n,k) = numerator of the maximum of the k-th Bernstein polynomial of degree n; denominator is A128434.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 27, 3, 27, 1, 1, 256, 216, 216, 256, 1, 1, 3125, 80, 5, 80, 3125, 1, 1, 46656, 37500, 34560, 34560, 37500, 46656, 1, 1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1, 1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 4, 4, 1;
1, 27, 3, 27, 1;
1, 256, 216, 216, 256, 1;
1, 3125, 80, 5, 80, 3125, 1;
1, 46656, 37500, 34560, 34560, 37500, 46656, 1;
1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1;
1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1;
-
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
T[n_, k_]= Numerator[B[n, k]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
def T(n,k): return numerator(B(n,k))
flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021
A128434
Triangle, read by rows, T(n,k) = denominator of the maximum of the k-th Bernstein polynomial of degree n; numerator is A128433.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 64, 8, 64, 1, 1, 625, 625, 625, 625, 1, 1, 7776, 243, 16, 243, 7776, 1, 1, 117649, 117649, 117649, 117649, 117649, 117649, 1, 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1, 1, 43046721, 43046721, 6561, 43046721, 43046721, 6561, 43046721, 43046721, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 9, 9, 1;
1, 64, 8, 64, 1;
1, 625, 625, 625, 625, 1;
1, 7776 243, 16, 243, 7776, 1;
1, 117649, 117649, 117649, 117649, 117649, 117649, 1;
1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1;
-
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
T[n_, k_]= Denominator[B[n, k]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
def T(n,k): return denominator(B(n,k))
flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021
A264234
Numerators of the coefficients in the expansion of 1/W(x) - 1/x where W(x) is the Lambert W function.
Original entry on oeis.org
1, -1, 2, -9, 32, -625, 324, -117649, 131072, -4782969, 1562500, -25937424601, 35831808, -23298085122481, 110730297608, -4805419921875, 562949953421312, -48661191875666868481, 91507169819844, -104127350297911241532841, 640000000000000000, -865405750887126927009
Offset: 0
Coefficients of expansion of exp(W(x)) are 1, 1, -1/2, 2/3, -9/8, 32/15, -625/144, 324/35, -117649/5760, 131072/2835, -4782969/44800, ... - _N. J. A. Sloane_, Jan 08 2021
-
[(-1)^n * Numerator(n^n/Factorial(n)): n in [0..50]]; // G. C. Greubel, Nov 14 2017
-
seq(numer((-1)^n*n^n/n!), n = 0..21);
-
CoefficientList[Series[1/ProductLog[x] - 1/x, {x, 0, 21}], x] // Numerator
-
vector(22, n, n--; (-1)^n*numerator(n^n/n!)) \\ Altug Alkan, Nov 09 2015
A226931
Numerator of n + Sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k), k=0..n).
Original entry on oeis.org
3, 9, 53, 231, 5319, 3167, 1296273, 1604979, 64370707, 22906587, 411169704813, 610433321, 424312831956207, 2146177886409, 98731231639051, 12218411169233691, 1112291237880234922707, 2196818399875253, 2619031544578888560315813, 16827894135040576041
Offset: 1
3, 9/2, 53/9, 231/32, 5319/625, 3167/324, 1296273/117649, 1604979/131072, ...
-
a(n) = numerator(n + sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k))); \\ Michel Marcus, Jun 11 2015
A227866
Derived from von Mangoldt matrix sequence.
Original entry on oeis.org
1, 1, 4, 27, 64, 3125, 288, 823543, 147456, 4251528, 460800, 285311670611, 111974400, 302875106592253, 3251404800, 13436928000, 106542032486400, 827240261886336764177, 1053455155200000, 1978419655660313589123979, 102395841085440000
Offset: 0
-
Clear[nn, t, n, k, i, s]; nn = 20; t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[t[k - i, n], {i, 1, n - 1}]]; Exp[Table[Limit[Zeta[s]*Sum[If[n == 1, 0, t[n, k]]/k^(s - 1), {k, 1, n}], s -> 1], {n, 0, nn}]]*(Range[nn + 1] - 1)!
Showing 1-7 of 7 results.
Comments