cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A063170 Schenker sums with n-th term.

Original entry on oeis.org

1, 2, 10, 78, 824, 10970, 176112, 3309110, 71219584, 1727242866, 46602156800, 1384438376222, 44902138752000, 1578690429731402, 59805147699103744, 2428475127395631750, 105224992014096760832, 4845866591896268695010, 236356356027029797011456
Offset: 0

Views

Author

Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)

Keywords

Comments

Urn, n balls, with replacement: how many selections if we stop after a ball is chosen that was chosen already? Expected value is a(n)/n^n.
Conjectures: The exponent in the power of 2 in the prime factorization of a(n) (its 2-adic valuation) equals 1 if n is odd and equals n - A000120(n) if n is even. - Gerald McGarvey, Nov 17 2007, Jun 29 2012
Amdeberhan, Callan, and Moll (2012) have proved McGarvey's conjectures. - Jonathan Sondow, Jul 16 2012
a(n), for n >= 1, is the number of colored labeled mappings from n points to themselves, where each component is one of two colors. - Steven Finch, Nov 28 2021

Examples

			a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) + 4*4*4*4.
G.f. = 1 + 2*x + 10*x^2 + 78*x^3 + 824*x^4 + 10970*x^5 + 176112*x^6 + ...
		

References

  • D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, p. 123, Exercise Section 1.2.11.3 18.

Crossrefs

Cf. A000312, A134095, A090878, A036505, A120266, A214402, A219546 (Schenker primes).

Programs

  • Maple
    seq(simplify(GAMMA(n+1,n)*exp(n)),n=0..20); # Vladeta Jovovic, Jul 21 2005
  • Mathematica
    a[n_] := Round[ Gamma[n+1, n]*Exp[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 16 2012, after Vladeta Jovovic *)
    a[ n_] := If[ n < 1, Boole[n == 0], n! Sum[ n^k / k!, {k, 0, n}]]; (* Michael Somos, Jun 05 2014 *)
    a[ n_] := If[ n < 0, 0, n! Normal[ Exp[x] + x O[x]^n] /. x -> n]; (* Michael Somos, Jun 05 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * sum( k=0, n, n^k / k!))};
    
  • PARI
    {a(n) = sum( k=0, n, binomial(n, k) * k^k * (n - k)^(n - k))}; /* Michael Somos, Jun 09 2004 */
    
  • PARI
    for(n=0,17,print1(round(intnum(x=0,[oo,1],exp(-x)*(n+x)^n)),", ")) \\ Gerald McGarvey, Nov 17 2007
    
  • Python
    from math import comb
    def A063170(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + (n**n<<1) if n else 1 # Chai Wah Wu, Apr 26 2023
  • UBASIC
    10 for N=1 to 42: T=N^N: S=T
    20 for K=N to 1 step -1: T/=N: T*=K: S+=T: next K
    30 print N,S: next N
    

Formula

a(n) = Sum_{k=0..n} n^k n!/k!.
a(n)/n! = Sum_{k=0..n} n^k/k!. (First n+1 terms of e^n power series.)
a(n) = A063169(n) + n^n.
E.g.f.: 1/(1-T)^2, where T=T(x) is Euler's tree function (see A000169).
E.g.f.: 1 / (1 - F), where F = F(x) is the e.g.f. of A003308. - Michael Somos, May 27 2012
a(n) = Sum_{k=0..n} binomial(n,k)*(n+k)^k*(-k)^(n-k). - Vladeta Jovovic, Oct 11 2007
Asymptotics of the coefficients: sqrt(Pi*n/2)*n^n. - N-E. Fahssi, Jan 25 2008
a(n) = A120266(n)*A214402(n) for n > 0. - Jonathan Sondow, Jul 16 2012
a(n) = Integral_{0..oo} exp(-x) * (n + x)^n dx. - Michael Somos, May 18 2004
a(n) = Integral_{0..oo} exp(-x)*(1+x/n)^n dx * n^n = A090878(n)/A036505(n-1) * n^n. - Gerald McGarvey, Nov 17 2007
EXP-CONV transform of A000312. - Tilman Neumann, Dec 13 2008
a(n) = n! * [x^n] exp(n*x)/(1 - x). - Ilya Gutkovskiy, Sep 23 2017
a(n) = (n+1)! - Sum_{k=0..n-1} binomial(n, k)*a(k)*(-k)^(n-k) for n > 0 with a(0) = 1 (see Max Alekseyev link). - Mikhail Kurkov, Jan 14 2025

A060435 Number of functions f: {1,2,...,n} -> {1,2,...,n} with even cycles only.

Original entry on oeis.org

1, 0, 1, 6, 57, 680, 9945, 172032, 3438673, 78003648, 1980083025, 55616359040, 1712630427849, 57375166877184, 2077563829893097, 80859304977696000, 3366275257190794785, 149270897223530835968, 7024011523121427204897, 349574012216588890718208
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

Comments

E.g.f. equals the square-root of the e.g.f. of A134095. - Paul D. Hanna, Oct 11 2007

Examples

			E.g.f. A(x) = 1 + 0*x + 1*x^2/2! + 6*x^3/3! + 57*x^4/4! + 680*x^5/5! +...
The formula A(x) = 1/sqrt(1 - LambertW(-x)^2 ) is illustrated by:
A(x) = 1/sqrt(1 - (x+ x^2+ 3^2*x^3/3!+ 4^3*x^4/4!+ 5^4*x^5/5! +...)^2).
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Cf. A134095.
Column k=2 of A246609.

Programs

  • Mathematica
    t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[(1/(1 - t^2))^(1/2), {x, 0, 20}], x]  (* Geoffrey Critzer, Dec 07 2011 *)
  • PARI
    {a(n)=local(LambertW=sum(k=0,n,(-x)^(k+1)*(k+1)^k/(k+1)!) +x*O(x^n)); n!*polcoeff(1/sqrt(1-subst(LambertW,x,-x)^2),n)} \\ Paul D. Hanna, Oct 11 2007

Formula

E.g.f.: 1/sqrt(1-(LambertW(-x))^2). a(n)=(n-1)!*Sum_{k=0..floor((n-2)/2)} (k+1)/2^(2*k+1)*binomial(2*k+2, k+1)*n^(n-2-2*k)/(n-2-2*k)!.
A134095(n) = Sum_{k=0..n} C(n,k) * a(n-k) * a(k) with a(0)=1 and a(1)=0 where A134095(n) = Sum_{k=0..n} C(n,k) * (n-k)^k * k^(n-k). - Paul D. Hanna, Oct 11 2007
a(n) ~ n! * 2^(3/4)*Gamma(3/4)*exp(n)/(4*Pi*n^(3/4)) * (1- 5*Pi/ (24*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Sep 24 2013

Extensions

More terms from Alois P. Heinz, Aug 26 2014

A277458 Expansion of e.g.f. -1/(1-LambertW(-x)).

Original entry on oeis.org

-1, 1, 0, 3, 16, 165, 2016, 30415, 539904, 11049129, 256038400, 6627314331, 189517916160, 5933803272397, 201893195083776, 7417376809230375, 292648536838045696, 12341039738944113105, 553942486234823786496, 26369048375194607316019, 1326864458454400696320000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*add((-1)^(k+1)*k*n^(n-k-1)/(n-k)!, k = 1..n), n = 1..20); # Peter Bala, Jul 23 2021
  • Mathematica
    CoefficientList[Series[-1/(1-LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
  • PARI
    my(x='x+O('x^50)); Vec(serlaplace(-1/(1 - lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) ~ n^(n-1) / 4.
a(n) = n!*Sum_{k = 1..n} (-1)^(k+1)*k*n^(n-k-1)/(n-k)! for n >= 1. Cf. A133297. - Peter Bala, Jul 23 2021
a(n) = (-1)^(n+1)*U(1-n, -n, -n) where U is the Kummer U function. - Peter Luschny, Jan 23 2025

A277510 E.g.f.: -1/(1-LambertW(-x))^2.

Original entry on oeis.org

-1, 2, -2, 6, 8, 170, 1872, 29246, 519808, 10698642, 248787200, 6458737142, 185138721792, 5808233422394, 197952647108608, 7283047491096750, 287705410381709312, 12145740050403520034, 545696709922799419392, 25998534614835587104742, 1309210567403228200960000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1-LambertW[-x])^2, {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^50); Vec(serlaplace(-1/(1 - lambertw(-x))^2)) \\ G. C. Greubel, Nov 08 2017

Formula

a(n) ~ n^(n-1) / 4.

A277490 E.g.f.: -1/(1+LambertW(-x)^2).

Original entry on oeis.org

-1, 0, 2, 12, 72, 520, 5040, 67284, 1156736, 23655888, 549676800, 14216252380, 405068387328, 12624364306008, 427599019108352, 15646376279614500, 615155126821355520, 25861820048469628576, 1157706908035331457024, 54977324662490442177708, 2760439046217459138560000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1+LambertW[-x]^2), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^50); Vec(serlaplace(-1/(1 + lambertw(-x)^2))) \\ G. C. Greubel, Nov 08 2017

Formula

a(n) ~ n^(n-1) / 2.

A292977 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, -1, 1, 6, 1, -2, 2, 2, 24, 1, -3, 5, -2, 9, 120, 1, -4, 10, -12, 8, 44, 720, 1, -5, 17, -34, 33, 8, 265, 5040, 1, -6, 26, -74, 120, -78, 112, 1854, 40320, 1, -7, 37, -138, 329, -424, 261, 656, 14833, 362880, 1, -8, 50, -232, 744, -1480, 1552, -360, 5504, 133496, 3628800
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 27 2017

Keywords

Comments

A(n,k) is the k-th inverse binomial transform of A000142 evaluated at n.
Can be considered as extension of the array A089258 to columns with negative indices via A089258(n,k) = A(n,-k) or, vice versa, A(n,k) = A089258(n,-k). - Max Alekseyev, Mar 06 2018

Examples

			Square array begins:
n=0:    1,   1,   1,    1,     1,      1,  ...
n=1:    1,   0,  -1,   -2,    -3,     -4,  ...
n=2:    2,   1,   2,    5,    10,     17,  ...
n=3:    6,   2,  -2,  -12,   -34,    -74,  ...
n=4:   24,   9,   8,   33,   120,    329,  ...
n=5:  120,  44,   8,  -78,  -424,  -1480,  ...
...
E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! +  (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ...
		

Crossrefs

Columns: A000142 (k=0), A000166 (k=1), A000023 (k=2), A010843 (k=3, with offset 0).
Main diagonal: A134095 (absolute values).

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten

Formula

T(n, k) = n! * Sum_{j=0..n} (-k)^j/j!. - Max Alekseyev, Mar 06 2018
E.g.f. of column k: exp(-k*x)/(1 - x).

A351768 a(n) = n! * Sum_{k=0..n} k^(n-k) * (n-k)^k/k!.

Original entry on oeis.org

1, 0, 2, 18, 276, 6260, 190950, 7523082, 371286440, 22356290952, 1608686057610, 136069954606190, 13345029902628732, 1500054487474871484, 191349476316804534638, 27464505325501082617170, 4402551348139824475260240, 783025812197886669354545552
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n-k) * (n-k)^k/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Feb 19 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*(n-k)^k/k!);

Formula

log(a(n)) ~ n *(2*log(n) - log(log(n)) - 2 + (log(log(n)) + log(log(n)-1) + 1)/log(n)). - Vaclav Kotesovec, Feb 19 2022

A302398 a(n) = n! * [x^n] 1/(1 + x*exp(n*x)).

Original entry on oeis.org

1, -1, -2, 3, 248, 5655, 62064, -3516625, -376936064, -21890186577, -495165203200, 96687112380639, 20607024735783936, 2471270260977141767, 142697263160045590528, -25986252776953159328625, -11860424645318274482077696, -2719428501410438623907546529, -372732332273232481973818294272
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + x Exp[n x]), {x, 0, n}], {n, 0, 18}]
    Join[{1}, Table[n! Sum[(-1)^(n - k) (n (n - k))^k/k!, {k, 0, n}], {n, 18}]]
    Join[{1}, Table[Sum[(-1)^k k! (n k)^(n - k) Binomial[n, k], {k, 0, n}], {n, 18}]]

Formula

a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*(n*(n-k))^k/k!.
a(n) = Sum_{k=0..n} (-1)^k*k!*(n*k)^(n-k)*binomial(n,k).

A332627 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 6, 117, 4388, 266065, 23731314, 2923345621, 475364541672, 98623225721601, 25421365316232710, 7969388199705535141, 2985785305877403047820, 1317500933136749853197329, 676266417871227455138941242, 399516621958550611386236160405
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(-x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 + k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A072364 = exp(-exp(-1)). - Vaclav Kotesovec, Jul 10 2021
E.g.f.: Sum_{k>=0} (k*x*exp(-x))^k. - Seiichi Manyama, Feb 19 2022

A302581 a(n) = n! * [x^n] -exp(-n*x)*log(1 - x).

Original entry on oeis.org

0, 1, -3, 20, -186, 2249, -33360, 586172, -11901008, 274098393, -7060189120, 201092672604, -6275340884736, 212915635727313, -7803567334571008, 307245946117223700, -12933084380738398208, 579587518114690731601, -27550568677612746940416, 1384553892443352890245636
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[-Exp[-n x] Log[1 - x], {x, 0, n}], {n, 0, 19}]
    Table[Sum[(-n)^(n - k) (k - 1)! Binomial[n, k], {k, 1, n}], {n, 0, 19}]
    nmax = 20; CoefficientList[Series[-Log[1 - LambertW[x]]/(1 + LambertW[x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)

Formula

a(n) = Sum_{k=1..n} (-n)^(n-k)*(k-1)!*binomial(n,k).
E.g.f.: -log(1 - LambertW(x))/(1 + LambertW(x)). - Vaclav Kotesovec, Jun 09 2019
a(n) ~ -(-1)^n * log(2) * n^n. - Vaclav Kotesovec, Jun 09 2019
Showing 1-10 of 15 results. Next