A063170
Schenker sums with n-th term.
Original entry on oeis.org
1, 2, 10, 78, 824, 10970, 176112, 3309110, 71219584, 1727242866, 46602156800, 1384438376222, 44902138752000, 1578690429731402, 59805147699103744, 2428475127395631750, 105224992014096760832, 4845866591896268695010, 236356356027029797011456
Offset: 0
Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)
a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) + 4*4*4*4.
G.f. = 1 + 2*x + 10*x^2 + 78*x^3 + 824*x^4 + 10970*x^5 + 176112*x^6 + ...
- D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, p. 123, Exercise Section 1.2.11.3 18.
- G. C. Greubel, Table of n, a(n) for n = 0..385
- Max Alekseyev, Recursion for A063170, answer to question on MathOverflow (2025).
- T. Amdeberhan, D. Callan, and V. Moll, p-adic analysis and combinatorics of truncated exponential sums, preprint, 2012.
- T. Amdeberhan, D. Callan and V. Moll, Valuations and combinatorics of truncated exponential sums, INTEGERS 13 (2013), #A21.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
- David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
- Marijke van Gans, Schenker sums
- Eric Weisstein, Exponential Sum Function.
-
seq(simplify(GAMMA(n+1,n)*exp(n)),n=0..20); # Vladeta Jovovic, Jul 21 2005
-
a[n_] := Round[ Gamma[n+1, n]*Exp[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 16 2012, after Vladeta Jovovic *)
a[ n_] := If[ n < 1, Boole[n == 0], n! Sum[ n^k / k!, {k, 0, n}]]; (* Michael Somos, Jun 05 2014 *)
a[ n_] := If[ n < 0, 0, n! Normal[ Exp[x] + x O[x]^n] /. x -> n]; (* Michael Somos, Jun 05 2014 *)
-
{a(n) = if( n<0, 0, n! * sum( k=0, n, n^k / k!))};
-
{a(n) = sum( k=0, n, binomial(n, k) * k^k * (n - k)^(n - k))}; /* Michael Somos, Jun 09 2004 */
-
for(n=0,17,print1(round(intnum(x=0,[oo,1],exp(-x)*(n+x)^n)),", ")) \\ Gerald McGarvey, Nov 17 2007
-
from math import comb
def A063170(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + (n**n<<1) if n else 1 # Chai Wah Wu, Apr 26 2023
-
10 for N=1 to 42: T=N^N: S=T
20 for K=N to 1 step -1: T/=N: T*=K: S+=T: next K
30 print N,S: next N
A060435
Number of functions f: {1,2,...,n} -> {1,2,...,n} with even cycles only.
Original entry on oeis.org
1, 0, 1, 6, 57, 680, 9945, 172032, 3438673, 78003648, 1980083025, 55616359040, 1712630427849, 57375166877184, 2077563829893097, 80859304977696000, 3366275257190794785, 149270897223530835968, 7024011523121427204897, 349574012216588890718208
Offset: 0
E.g.f. A(x) = 1 + 0*x + 1*x^2/2! + 6*x^3/3! + 57*x^4/4! + 680*x^5/5! +...
The formula A(x) = 1/sqrt(1 - LambertW(-x)^2 ) is illustrated by:
A(x) = 1/sqrt(1 - (x+ x^2+ 3^2*x^3/3!+ 4^3*x^4/4!+ 5^4*x^5/5! +...)^2).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[(1/(1 - t^2))^(1/2), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 07 2011 *)
-
{a(n)=local(LambertW=sum(k=0,n,(-x)^(k+1)*(k+1)^k/(k+1)!) +x*O(x^n)); n!*polcoeff(1/sqrt(1-subst(LambertW,x,-x)^2),n)} \\ Paul D. Hanna, Oct 11 2007
A277458
Expansion of e.g.f. -1/(1-LambertW(-x)).
Original entry on oeis.org
-1, 1, 0, 3, 16, 165, 2016, 30415, 539904, 11049129, 256038400, 6627314331, 189517916160, 5933803272397, 201893195083776, 7417376809230375, 292648536838045696, 12341039738944113105, 553942486234823786496, 26369048375194607316019, 1326864458454400696320000
Offset: 0
-
seq(n!*add((-1)^(k+1)*k*n^(n-k-1)/(n-k)!, k = 1..n), n = 1..20); # Peter Bala, Jul 23 2021
-
CoefficientList[Series[-1/(1-LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
-
my(x='x+O('x^50)); Vec(serlaplace(-1/(1 - lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
A277510
E.g.f.: -1/(1-LambertW(-x))^2.
Original entry on oeis.org
-1, 2, -2, 6, 8, 170, 1872, 29246, 519808, 10698642, 248787200, 6458737142, 185138721792, 5808233422394, 197952647108608, 7283047491096750, 287705410381709312, 12145740050403520034, 545696709922799419392, 25998534614835587104742, 1309210567403228200960000
Offset: 0
-
CoefficientList[Series[-1/(1-LambertW[-x])^2, {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^50); Vec(serlaplace(-1/(1 - lambertw(-x))^2)) \\ G. C. Greubel, Nov 08 2017
A277490
E.g.f.: -1/(1+LambertW(-x)^2).
Original entry on oeis.org
-1, 0, 2, 12, 72, 520, 5040, 67284, 1156736, 23655888, 549676800, 14216252380, 405068387328, 12624364306008, 427599019108352, 15646376279614500, 615155126821355520, 25861820048469628576, 1157706908035331457024, 54977324662490442177708, 2760439046217459138560000
Offset: 0
-
CoefficientList[Series[-1/(1+LambertW[-x]^2), {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^50); Vec(serlaplace(-1/(1 + lambertw(-x)^2))) \\ G. C. Greubel, Nov 08 2017
A292977
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 1, 6, 1, -2, 2, 2, 24, 1, -3, 5, -2, 9, 120, 1, -4, 10, -12, 8, 44, 720, 1, -5, 17, -34, 33, 8, 265, 5040, 1, -6, 26, -74, 120, -78, 112, 1854, 40320, 1, -7, 37, -138, 329, -424, 261, 656, 14833, 362880, 1, -8, 50, -232, 744, -1480, 1552, -360, 5504, 133496, 3628800
Offset: 0
Square array begins:
n=0: 1, 1, 1, 1, 1, 1, ...
n=1: 1, 0, -1, -2, -3, -4, ...
n=2: 2, 1, 2, 5, 10, 17, ...
n=3: 6, 2, -2, -12, -34, -74, ...
n=4: 24, 9, 8, 33, 120, 329, ...
n=5: 120, 44, 8, -78, -424, -1480, ...
...
E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! + (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ...
Main diagonal:
A134095 (absolute values).
-
Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten
A351768
a(n) = n! * Sum_{k=0..n} k^(n-k) * (n-k)^k/k!.
Original entry on oeis.org
1, 0, 2, 18, 276, 6260, 190950, 7523082, 371286440, 22356290952, 1608686057610, 136069954606190, 13345029902628732, 1500054487474871484, 191349476316804534638, 27464505325501082617170, 4402551348139824475260240, 783025812197886669354545552
Offset: 0
-
Join[{1}, Table[n!*Sum[k^(n-k) * (n-k)^k/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Feb 19 2022 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)*(n-k)^k/k!);
A302398
a(n) = n! * [x^n] 1/(1 + x*exp(n*x)).
Original entry on oeis.org
1, -1, -2, 3, 248, 5655, 62064, -3516625, -376936064, -21890186577, -495165203200, 96687112380639, 20607024735783936, 2471270260977141767, 142697263160045590528, -25986252776953159328625, -11860424645318274482077696, -2719428501410438623907546529, -372732332273232481973818294272
Offset: 0
-
Table[n! SeriesCoefficient[1/(1 + x Exp[n x]), {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n! Sum[(-1)^(n - k) (n (n - k))^k/k!, {k, 0, n}], {n, 18}]]
Join[{1}, Table[Sum[(-1)^k k! (n k)^(n - k) Binomial[n, k], {k, 0, n}], {n, 18}]]
A332627
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * k! * k^n.
Original entry on oeis.org
1, 1, 6, 117, 4388, 266065, 23731314, 2923345621, 475364541672, 98623225721601, 25421365316232710, 7969388199705535141, 2985785305877403047820, 1317500933136749853197329, 676266417871227455138941242, 399516621958550611386236160405
Offset: 0
-
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(-x))^k))) \\ Seiichi Manyama, Feb 19 2022
A302581
a(n) = n! * [x^n] -exp(-n*x)*log(1 - x).
Original entry on oeis.org
0, 1, -3, 20, -186, 2249, -33360, 586172, -11901008, 274098393, -7060189120, 201092672604, -6275340884736, 212915635727313, -7803567334571008, 307245946117223700, -12933084380738398208, 579587518114690731601, -27550568677612746940416, 1384553892443352890245636
Offset: 0
-
Table[n! SeriesCoefficient[-Exp[-n x] Log[1 - x], {x, 0, n}], {n, 0, 19}]
Table[Sum[(-n)^(n - k) (k - 1)! Binomial[n, k], {k, 1, n}], {n, 0, 19}]
nmax = 20; CoefficientList[Series[-Log[1 - LambertW[x]]/(1 + LambertW[x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)
Showing 1-10 of 15 results.
Comments