A052182
Determinant of n X n matrix whose rows are cyclic permutations of 1..n.
Original entry on oeis.org
1, -3, 18, -160, 1875, -27216, 470596, -9437184, 215233605, -5500000000, 155624547606, -4829554409472, 163086595857367, -5952860799406080, 233543408203125000, -9799832789158199296, 437950726881001816329, -20766159817517617053696, 1041273502979112415328410
Offset: 1
Henry M. Gunn High School Mathematical Circle (Joshua Zucker), Jan 26 2000
a(3) = 18 because this is the determinant of [(1,2,3), (3,1,2), (2,3,1) ].
-
1,seq(LinearAlgebra:-Determinant(Matrix(n,shape=Circulant[$1..n])),n=2..30); # Robert Israel, Aug 31 2014
-
f[n_] := Det[ Table[ RotateLeft[ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 19] (* or *)
f[n_] := (-1)^(n - 1)*n^(n - 2)*(n^2 + n)/2; Array[f, 19]
(* Robert G. Wilson v, Aug 31 2014 *)
Table[Det[Table[RotateRight[Range[k],n],{n,0,k-1}]],{k,30}] (* Harvey P. Dale, Jun 20 2024 *)
-
(1+n)^(n-1)*binomial(n+2,n)*(-1)^(n) $ n=0..16 // Zerinvary Lajos, Apr 01 2007
-
a(n) = (n+1)*(-n)^(n-1)/2; \\ Altug Alkan, Dec 17 2017
A134095
Expansion of e.g.f. A(x) = 1/(1 - LambertW(-x)^2).
Original entry on oeis.org
1, 0, 2, 12, 120, 1480, 22320, 396564, 8118656, 188185680, 4871980800, 139342178140, 4363291266048, 148470651659928, 5455056815237120, 215238256785814500, 9077047768435752960, 407449611073696325536, 19396232794530856894464, 976025303642559490903980
Offset: 0
E.g.f.: A(x) = 1 + 0*x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1480*x^5/5! + ...
The formula A(x) = 1/(1 - LambertW(-x)^2) is illustrated by:
A(x) = 1/(1 - (x + x^2 + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + ...)^2).
-
seq(simplify(GAMMA(n+1,-n)*(-exp(-1))^n),n=0..20); # Vladeta Jovovic, Oct 17 2007
-
CoefficientList[Series[1/(1-LambertW[-x]^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
a[x0_] := x D[1/x Exp[x], {x, n}] x^n Exp[-x] /. x->x0
Table[a[n], {n, 0, 20}] (* Gerry Martens, May 05 2016 *)
-
{a(n)=sum(k=0,n,(n-k)^k*k^(n-k)*binomial(n,k))}
-
/* Generated by e.g.f. 1/(1 - LambertW(-x)^2 ): */
{a(n)=my(LambertW=-x*sum(k=0,n,(-x)^k*(k+1)^(k-1)/k!) +x*O(x^n)); n!*polcoeff(1/(1-subst(LambertW,x,-x)^2),n)}
A246609
Number T(n,k) of endofunctions on [n] whose cycle lengths are multiples of k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 4, 1, 0, 27, 6, 2, 0, 256, 57, 24, 6, 0, 3125, 680, 300, 120, 24, 0, 46656, 9945, 4480, 2160, 720, 120, 0, 823543, 172032, 78750, 41160, 17640, 5040, 720, 0, 16777216, 3438673, 1591296, 866460, 430080, 161280, 40320, 5040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 4, 1;
0, 27, 6, 2;
0, 256, 57, 24, 6;
0, 3125, 680, 300, 120, 24;
0, 46656, 9945, 4480, 2160, 720, 120;
0, 823543, 172032, 78750, 41160, 17640, 5040, 720;
...
Columns k=0-10 give:
A000007,
A000312,
A060435,
A246610,
A246611,
A246612,
A246613,
A246614,
A246615,
A246616,
A246617.
Main diagonal gives
A000142(n-1) for n > 0.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0 or i>n, 0, add(b(n-i*j, i+k, k)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
T:= (n, k)->add(b(j, k$2)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(seq(T(n,k), k=0..n), n=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0 || i > n, 0, Sum[b[n-i*j, i+k, k]*(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!, {j, 0, n/i}]]]; T[0, 0] = 1; T[n_, k_] := Sum[b[j, k, k]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
A070896
Determinant of the Cayley addition table of Z_{n}.
Original entry on oeis.org
0, -1, -9, 96, 1250, -19440, -352947, 7340032, 172186884, -4500000000, -129687123005, 4086546038784, 139788510734886, -5159146026151936, -204350482177734375, 8646911284551352320, 389289535005334947848, -18580248257778920521728
Offset: 1
a(3) = -9 because the determinant of {{0,1,2}, {1,2,0}, {2,0,1}} is -9.
-
[(-1)^Floor(n/2)*(1/2)*(n-1)*n^(n-1): n in [1..50]]; // G. C. Greubel, Nov 14 2017
-
Table[(-1)^Floor[n/2]*(1/2)*(n - 1)*n^(n - 1), {n, 1, 50}] (* G. C. Greubel, Nov 14 2017 *)
-
a(n)=(-1)^floor(n/2)*(1/2)*(n-1)*n^(n-1)
A116956
Number of functions f:{1,2,...,n}->{1,2,...,n} with odd cycles only.
Original entry on oeis.org
1, 1, 3, 18, 157, 1800, 25551, 432376, 8494809, 190029888, 4768313275, 132626098176, 4049755214517, 134677876657792, 4845193429684167, 187490897290080000, 7765153170076158001, 342721890859339812864, 16058392049508837366771, 796093438190851834236928
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
(j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 20 2016
-
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[
Series[((1 + t)/(1 - t))^(1/2), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 07 2011 *)
A273994
Number of endofunctions on [n] whose cycle lengths are Fibonacci numbers.
Original entry on oeis.org
1, 1, 4, 27, 250, 2975, 43296, 744913, 14797036, 333393345, 8403026320, 234300271811, 7161316358616, 238108166195263, 8556626831402560, 330494399041444425, 13654219915946513296, 600870384794864432897, 28060233470995898505024, 1386000542545570348128235
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:= $0..2;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= g, f+g
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {g, f + g}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A273996
Number of endofunctions on [n] whose cycle lengths are factorials.
Original entry on oeis.org
1, 1, 4, 25, 218, 2451, 33952, 560407, 10750140, 235118665, 5775676496, 157448312649, 4716609543736, 154007821275595, 5443783515005760, 207093963680817511, 8436365861409555728, 366403740283162634193, 16900793597898691865920, 825115046704241167668025
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:= $0..2;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= f*g, g+1
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {f*g, g + 1}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A273998
Number of endofunctions on [n] whose cycle lengths are primes.
Original entry on oeis.org
1, 0, 1, 8, 75, 904, 13255, 229536, 4587961, 103971680, 2634212961, 73787255200, 2264440519891, 75563445303072, 2724356214102055, 105546202276277504, 4373078169296869425, 192970687573630633216, 9035613818754820178689, 447469496697658409400960
Offset: 0
-
b:= proc(n) option remember; local r, p;
if n=0 then 1 else r, p:=0, 2;
while p<=n do r:= r+(p-1)!*b(n-p)*
binomial(n-1, p-1); p:= nextprime(p)
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, p}, If[n == 0, 1, {r, p} = {0, 2}; While[p <= n, r = r + (p - 1)!*b[n - p]*Binomial[n-1, p-1]; p = NextPrime[p]]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A305824
Number of endofunctions on [n] whose cycle lengths are triangular numbers.
Original entry on oeis.org
1, 1, 3, 18, 157, 1776, 24807, 413344, 8004537, 176630400, 4374300331, 120136735104, 3623854678677, 119102912981248, 4236492477409935, 162152320065532416, 6645233337842716273, 290321208589666369536, 13469914225467040015827, 661442143465113960448000
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:=$0..2;
while f<=n do r, f, g:= r+(f-1)!*
b(n-f)*binomial(n-1, f-1), f+g, g+1
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, {r, f, g} = {r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1], f + g, g + 1}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 15 2018, after Alois P. Heinz *)
A273997
Number of endofunctions on [n] whose cycle lengths are squares.
Original entry on oeis.org
1, 1, 3, 16, 131, 1446, 19957, 329344, 6315129, 137942380, 3382214291, 92014156224, 2751300514987, 89701699067176, 3167429783609925, 120428877629249536, 4905431165356442993, 213120603686615692176, 9837426739843075654819, 480775495859934668704000
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:=0, 1, 3;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= f+g, g+2
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 3}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {f + g, g + 2}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
Showing 1-10 of 11 results.
Comments