A048954
Wendt determinant of n-th circulant matrix C(n).
Original entry on oeis.org
1, -3, 28, -375, 3751, 0, 6835648, -1343091375, 364668913756, -210736858987743, 101832157445630503, 0, 487627751563388801409591, -4875797582053878382039400448, 58623274842128064372315087290368, -1562716604740038367719196682456673375
Offset: 1
a(2) = det [ 1 2 ; 2 1 ] = -3.
a(3) = det [ 1 3 3 ; 3 1 3 ; 3 3 1 ] = 28.
a(4) = det [ 1 4 6 4 ; 4 1 4 6 ; 6 4 1 4 ; 4 6 4 1 ] = -375.
- P. Ribenboim, "Fermat's Last Theorem for Amateurs", Springer-Verlag, NY, 1999, pp. 126, 136.
- P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer-Verlag, NY, 1979, pp. 61-63. MR0551363 (81f:10023).
- T. D. Noe, Table of n, a(n) for n=1..50
- David W. Boyd, The asymptotic behaviour of the binomial circulant determinant, Journal of Mathematical Analysis and Applications, Volume 86, Issue 1, March 1982, Pages 30-38.
- E. Brown and M. Chamberland, Generalizing Gauss's Gem, Amer. Math. Monthly, 119 (No. 7, 2012), 597-601. - _N. J. A. Sloane_, Sep 07 2012
- D. Burde and W. A. Moens, The structure of Lie algebras with a derivation satisfying a polynomial identity, arXiv:2009.05434 [math.RA], 2020.
- L. Carlitz, A determinant connected with Fermat's last theorem, Proc. Amer. Math. Soc. 10 (1959), 686-690.
- L. Carlitz, A determinant connected with Fermat's last theorem, Proc. Amer. Math. Soc. 11 (1960), 730-733.
- Joshua Cooper and Zhibin Du, Note on the spectra of Steiner distance hypermatrices, arXiv:2403.02287 [math.CO], 2024. See pp. 2, 4.
- Greg Fee and Andrew Granville, The prime factors of Wendt's binomial circulant determinant, Math. Comp. 57 (1991), 839-848.
- David Ford and Vijay Jha, On Wendt's Determinant and Sophie Germain's Theorem, Experimental Mathematics, 2 (1993) No. 2, 113-120.
- J. S. Frame, Factors of the binomial circulant determinant, Fibonacci Quart., 18 (1980), pp. 9-23.
- Charles Helou, On Wendt's Determinant, Math. Comp., 66 (1997) No. 219, 1341-1346.
- Charles Helou and Guy Terjanian, Arithmetical properties of wendt's determinant, Journal of Number Theory, Volume 115, Issue 1, November 2005, Pages 45-57.
- Emma Lehmer, On a resultant connected with Fermat's last theorem, Bull. Amer. Math. Soc. 41 (1935), 864-867.
- Gerard P. Michon, Factorization of Wendt's Determinant (table for n=1 to 114)
- Anastasios Simalarides, Upper bounds for the prime divisors of Wendt's determinant, Math. Comp., 71 (2002), 415-427.
- Eric Weisstein's World of Mathematics, Circulant matrix
- E. Wendt, Arithmetische Studien über den letzten Fermatschen Satz, welcher aussagt, dass die Gleichung a^n=b^n+c^n für n>2 in ganzen Zahlen nicht auflösbar ist, Reimer (Berlin), 1894.
See
A096964 for another definition.
-
a[ n_] := Resultant[ x^n - 1, (1+x)^n - 1, x];
-
{a(n) = if( n<1, 0, matdet( matrix( n, n, i, j, binomial( n, (j-i)%n ))))}
-
a(n) = polresultant( x^n - 1, (1+x)^n - 1, x )
Additional comments from
Michael Somos, May 27 2000 and Dec 16 2001
A066933
Determinant of n X n matrix whose rows are cyclic permutations of 2..prime(n).
Original entry on oeis.org
1, 2, -5, -70, 1275, 97748, -2713585, -251983958, 9651414311, 1137214908700, -268100912462097, -16553358418854560, 4303513869962179379, 602501593820064477686, -50199332236439321779977, -7847812115804566640572424, 2754406130856424049914030863
Offset: 0
a(3) = -70 because this is the determinant of [(2,3,5), (3,5,2), (5,2,3)].
-
a:= n-> LinearAlgebra[Determinant](Matrix(n,
(i, j)-> ithprime(1+irem(i+j-2, n)))):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 09 2016
-
f[ n_ ] := Module[ {a = Table[ Prime[ i ], {i, 1, n} ], m = {}, k = 0}, While[ k < n, m = Append[ m, RotateLeft[ a, k ] ]; k++ ]; Det[ m ] ]; Table[ f[ n ], {n, 1, 16} ]
-
a(n) = matdet(matrix(n, n, i, j, prime(1+lift(Mod(i+j-2, n))))); \\ Michel Marcus, Aug 11 2019; corrected Jun 12 2022
A086459
Determinant of the circulant matrix whose rows are formed by successively rotating the vector (1, 2, 4, 8, ..., 2^(n-1)) right.
Original entry on oeis.org
1, -3, 49, -3375, 923521, -992436543, 4195872914689, -70110209207109375, 4649081944211090042881, -1227102111503512992112190463, 1291749870339606615892191271170049, -5429914198235566686555216227881787109375
Offset: 1
a(3) = determinant of the matrix ((1,2,4),(4,1,2),(2,4,1)) = 49. [Corrected by _T. D. Noe_, Jan 22 2008]
- Richard Bellman, Introduction to Matrix Analysis, Second Edition, SIAM, 1970, pp. 242-3.
- Philip J. Davis, Circulant Matrices, Second Edition, Chelsea, 1994.
Cf.
A048954 (circulant of binomial coefficients),
A052182 (circulant of natural numbers),
A066933 (circulant of prime numbers).
-
restart:with (combinat):a:=n->mul(-stirling2(n,2), j=3..n): seq(a(n), n=2..19); # Zerinvary Lajos, Jan 01 2009
-
Table[x=2^Range[0, n-1]; m=Table[RotateRight[x, i-1], {i, n}]; Det[m], {n, 12}]
A070896
Determinant of the Cayley addition table of Z_{n}.
Original entry on oeis.org
0, -1, -9, 96, 1250, -19440, -352947, 7340032, 172186884, -4500000000, -129687123005, 4086546038784, 139788510734886, -5159146026151936, -204350482177734375, 8646911284551352320, 389289535005334947848, -18580248257778920521728
Offset: 1
a(3) = -9 because the determinant of {{0,1,2}, {1,2,0}, {2,0,1}} is -9.
-
[(-1)^Floor(n/2)*(1/2)*(n-1)*n^(n-1): n in [1..50]]; // G. C. Greubel, Nov 14 2017
-
Table[(-1)^Floor[n/2]*(1/2)*(n - 1)*n^(n - 1), {n, 1, 50}] (* G. C. Greubel, Nov 14 2017 *)
-
a(n)=(-1)^floor(n/2)*(1/2)*(n-1)*n^(n-1)
A118713
a(n) = determinant of n X n circulant matrix whose first row is A001358(1), A001358(2), ..., A001358(n) where A001358(n) = n-th semiprime.
Original entry on oeis.org
4, -20, 361, -3567, 218053, -3455872, 736439027, -16245418225, 1519211613654, -37662452460912, 20199655476042865, -643524421698841536, 46513669467992431114, -3754367220494585505280, 277686193779526116536293, -123973821931125256333959105, 20103033234038999233385180658
Offset: 1
a(2) = -20 = determinant
|4,6|
|6,4|.
a(3) = 361 = 19^2 = determinant
|4,6,9|
|9,4,6|
|6,9,4|.
-
A118713 := proc(n)
local C,r,c ;
C := Matrix(1..n,1..n) ;
for r from 1 to n do
for c from 1 to n do
C[r,c] := A001358(1+((c-r) mod n)) ;
end do:
end do:
LinearAlgebra[Determinant](C) ;
end proc:
seq(A118713(n),n=1..13) ;
-
nmax = 13;
sp = Select[Range[3 nmax], PrimeOmega[#] == 2&];
a[n_] := Module[{M}, M[1] = sp[[1 ;; n]];
M[k_] := M[k] = RotateRight[M[k - 1]];
Det[Table[M[k], {k, 1, n}]]];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 16 2023 *)
A023999
Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling inward, starting in a corner.
Original entry on oeis.org
1, 5, 48, 660, 11760, 257040, 6652800, 198918720, 6745939200, 255826771200, 10727081164800, 492775291008000, 24610605962342400, 1327677426915840000, 76940526008586240000, 4766815315895592960000, 314406967644177408000000, 21995911456386651463680000
Offset: 1
Charles Diminnie (charles.diminnie(AT)rampo.angelo.edu)
n=4: det of
.1..2..3.4
12.13.14.5
11.16.15.6
10..9..8.7
- Alois P. Heinz, Table of n, a(n) for n = 1..200
- Gaurav Bhatnagar, Christian Krattenthaler, Spiral determinants, arXiv:1704.02859 [math.CO], 2017.
- Charles Vanden Eynden, Problem 1517, Mathematics Magazine, Vol. 70, No. 1, Feb., 1997 p. 65.
-
a:= proc(n) option remember; `if`(n<2, (3*n+1)/4,
4*(3*n-1)*(2*n-5)*(2*n-3) *a(n-2) /(3*n-7))
end:
seq(a(n), n=1..20); # Alois P. Heinz, Jan 21 2014
-
M[0, 0] = 1;
M[i_, j_] := If[i <= j,
If[i + j >= 0, If[i != j, M[i + 1, j] + 1, M[i, j - 1] + 1],
M[i, j + 1] + 1],
If[i + j > 1, M[i, j - 1] + 1, M[i - 1, j] + 1]
]
M[n_] := n^2 + 1 - If[EvenQ[n],
Table[M[i, j], {j, n/2, -n/2 + 1, -1}, {i, -n/2 + 1, n/2}],
Table[M[i, j], {j, (n - 1)/2, -(n - 1)/2, -1}, {i, -(n - 1)/2, (n - 1)/2}]]
a[n_]:=Det[M[n]] (* Christian Krattenthaler, Apr 19 2017 *)
-
A023999(n):=if n=1 then 1 else 2*((-1)^((n+4)*(n-1))/2 *(3*n-1) * (2*n-3)!/(n-2)!)$
makelist(A023999(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
A085719
Permanent of n X n matrix whose rows are cyclic permutations of 1..n.
Original entry on oeis.org
1, 1, 5, 54, 1060, 33225, 1517028, 95036284, 7828309568, 820553006835, 106652605456000, 16835058193182834, 3172396072749375744, 703470523269606264445, 181335014313248383578368, 53768377727402203980675000, 18172294259291992881395286016
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 19 2003
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](
Matrix(n, (i, j)-> 1+irem(j+i, n)))):
seq(a(n), n=0..17); # Alois P. Heinz, Apr 28 2020
-
permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
for(n=1,22,a=matrix(n,n,i,j,1+(j-i)%n);print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
-
def A085719(n) : return matrix([[(i-j)%n+1 for j in range(n)] for i in range(n)]).permanent() # Eric M. Schmidt, May 04 2013
A123745
Circulants of Fibonacci numbers (without F_0 = 0).
Original entry on oeis.org
1, 0, 4, 35, 1812, 170240, 46301673, 30413016864, 52171354014208, 228072747428273319, 2583414317082067853704, 75732718487930382583857152, 5773860969402842827019263155009, 1146353725688692827225795357533033072, 593830518002528577221255815133242142736384
Offset: 1
n=4: the circulant 4 X 4 matrix is M(4) = matrix([3,2,1,1],[1,3,2,1],[1,1,3,2],[2,1,1,3]).
n=4: 4th roots of unity: rho_4 = I, (rho_4)^2 = -1, (rho_4)^3 = -I, (rho_4)^4 =1, with I^2=-1.
n=4: the eigenvalues of M(4) are therefore 1*I^k + 1*(-1)^k + 2*(-I)^k + 3*1^k, k=1,...,4, namely 2-I,1,2+I,7.
n=4: a(4)= Det(M(4)) = 35 = (2-I)*1*(2+I)*7.
- P. J. Davis, Circulant Matrices, J. Wiley, New York, 1979.
Cf.
A123744 (Fibonacci circulants including F_0 = 0).
Cf.
A052182 (with n instead of Fibonacci(n) and first row reversed).
-
a(n) = matdet(matrix(n, n, i, j, fibonacci(n-lift(Mod(j-i, n))))); \\ Michel Marcus, Aug 11 2019
A383772
a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1, 2, ... , n), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
Original entry on oeis.org
0, -4, -18, -610, -15675, -772122, -47282844, -3918873376, -410168886615, -53329052728000, -8417451284317614, -1586200451151892608, -351735180091505203539, -90667510133054591492224, -26884188746929397888775000, -9086147134545912835276742656
Offset: 1
The rows of M(4) are (1, 2, 3, 4), (4, 1, 2, 3), (3, 4, 1, 2), (2, 3, 4, 1); determinant(M(4)) = -160; permanent(M(4)) = 1060, so neg(M(4)) = (-160 - 1060)/2 = -610 and pos(M(4)) = (-160 + 1060)/2 = 450.
-
z = 18;
v[n_] := Table[k + 1, {k, 0, n - 1}];
u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]];
p = Table[Simplify[Permanent[u[n]]], {n, 1, z}] (* A085719 *)
d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A052182 *)
neg = (d - p)/2 (* A383772 *)
pos = (d + p)/2 (* A383773 *)
A383773
a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1, 2, ... , n), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
Original entry on oeis.org
1, 1, 36, 450, 17550, 744906, 47753440, 3909436192, 410384120220, 53323552728000, 8417606908865220, 1586195621597483136, 351735343178101060906, 90667504180193792086144, 26884188980472806091900000, 9086147124746080046118543360, 3472279409772212369077001352888
Offset: 1
The rows of M(4) are (1, 2, 3, 4), (4, 1, 2, 3), (3, 4, 1, 2), (2, 3, 4, 1); determinant(M(4)) = -160; permanent(M(4)) = 1060, so neg(M(4)) = (-160 - 1060)/2 = -610 and pos(M(4)) = (-160 + 1060)/2 = 450.
-
z = 18;
v[n_] := Table[k + 1, {k, 0, n - 1}];
u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]];
p = Table[Simplify[Permanent[u[n]]], {n, 1, z}] (* A085719 *)
d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A052182 *)
neg = (d - p)/2 (* A383772 *)
pos = (d + p)/2 (* A383773 *)
Showing 1-10 of 23 results.
Comments