cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Christian Krattenthaler

Christian Krattenthaler's wiki page.

Christian Krattenthaler has authored 5 sequences.

A131658 For n >= 1, put A_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j and B_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j * (Sum__{k=j+1..j*n} (1/k)), and let u(n) be the largest integer for which exp(B_n(z)/(u(n)*A_n(z))) has integral coefficients. The sequence is u(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 156764160000, 49380710400000, 217275125760000, 1086375628800000, 1738201006080000
Offset: 1

Author

Christian Krattenthaler (Christian.Krattenthaler(AT)univie.ac.at), Sep 12 2007, Sep 30 2007

Keywords

Comments

Different from A131657 and A056612.

Crossrefs

Cf. A007757 (bisection at even integers), A056612, A131657.

Formula

A formula, conditional on a widely believed conjecture, can be found in the article by Krattenthaler and Rivoal (2007-2009) cited in the references: see Theorem 4 and the accompanying remarks.

A131657 For n >= 1, put A_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j and B_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j * (Sum_{k=1..j*n} (1/k)), and let b(n) be the largest integer for which exp(B_n(z)/(b(n)*A_n(z))) has integral coefficients. The sequence is b(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 783820800000, 9876142080000, 651825377280000, 217275125760000, 8691005030400000
Offset: 1

Author

Christian Krattenthaler (Christian.Krattenthaler(AT)univie.ac.at), Sep 12 2007, Sep 30 2007

Keywords

Comments

Different from A131658 and A056612. The first difference between A056612 and this sequence occurs for n = 20, while the first difference between A056612 and A131658 occurs for n = 21.
Krattenhaler and Rivoal (2007-2009) conjecture that a(n) = n!*Xi(n), where Xi(1) = 1, Xi(7) = 1/140, and Xi(n) = Product_{p <= n} p^min(2, v_p(H_n)) for n <> 1, 7, where v_p(r) is the p-adic valuation of rational r. (Here p indicates a prime and H_n is the n-th harmonic number.) - Petros Hadjicostas, May 24 2020

Examples

			From _Petros Hadjicostas_, May 24 2020: (Start)
To illustrate the Krattenhaler-Rivoal conjecture consider the case n = 24. Then H_24 = Sum_{k=1..24} 1/k = 1347822955/356948592 and {p <= 24} = {2, 3, 5, 7, 11, 13, 17, 19, 23} with {v_p(numerator): p <= 24} = {0, 0, 1, 0, 0, 0, 0, 0, 0} and {v_p(denominator): p <= 24} = {4, 1, 0, 1, 1, 1, 1, 1, 1}.
Thus, the conjectured value for a(24) is 24! * (2^(0-4) * 3^(0-1) * 5^(1-0) * 7^(0-1) * 11^(0-1) * 13^(0-1) * 17^(0-1) * 19^(0-1) * 23^(0-1)) since no exponent of a prime is > 2. This product equals 8691005030400000 = a(24). (End)
		

Crossrefs

Formula

A formula, conditional on a widely believed conjecture, can be found in Theorem 3 with k = 1 in the article by Krattenthaler and Rivoal (2007-2009) cited in the references; see the remarks before Theorem 4 in that article.

A036687 a(n) = Product_{i=0..n} (3*i+1)! / (n+i)!.

Original entry on oeis.org

1, 12, 420, 35280, 6486480, 2473511040, 1888413246720, 2815188363187200, 8043859365429888000, 43422645527382401280000, 437806134821131674998400000, 8167684917019434265210752000000, 279763767797866931083907001600000000, 17478686582471797472931336490014720000000
Offset: 0

Author

Christian Krattenthaler (kratt(AT)ap.UniVie.AC.AT)

Keywords

A049112 2-ranks of difference sets constructed from Glynn type I hyperovals.

Original entry on oeis.org

1, 1, 3, 7, 13, 23, 45, 87, 167, 321, 619, 1193, 2299, 4431, 8541, 16463, 31733, 61167, 117903, 227265, 438067, 844401, 1627635, 3137367, 6047469, 11656871, 22469341, 43311047, 83484727, 160921985, 310187099, 597904857, 1152498667
Offset: 1

Author

Christian Krattenthaler (kratt(AT)ap.univie.ac.at)

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,3,7,13];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] +a[n-4] -1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5) )); // G. C. Greubel, Jul 10 2019
    
  • Maple
    L := 1,1,3,7,13: for i from 6 to 140 do l := nops([ L ]): L := L,op(l,[ L ])+op(l-1,[ L ])+op(l-2,[ L ])+op(l-3,[ L ])-1: od: [ L ];
  • Mathematica
    Join[{1,1,3,7}, Table[a[1]=3; a[2]=1; a[3]=3; a[4]=7; a[i]=a[i-1]+a[i-2] +a[i-3]+a[i-4] -1, {i,5,40}]]
    CoefficientList[Series[(1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5), {x,0,40}], x] (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5)) \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    ((1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
    

Formula

G.f.: (1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5).
a(n+1) = a(n) + a(n-1) + a(n-2) + a(n-3) - 1, n >= 5.

A049114 2-ranks of difference sets constructed from Glynn type II hyperovals.

Original entry on oeis.org

1, 1, 5, 7, 21, 37, 89, 173, 383, 777, 1665, 3441, 7277, 15159, 31885, 66645, 139865, 292757, 613823, 1285585, 2694433, 5644609, 11828501, 24782311, 51928773, 108802597, 227978105, 477674813, 1000877759, 2097121497, 4394101857
Offset: 1

Author

Christian Krattenthaler (kratt(AT)ap.univie.ac.at)

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,5,7,21];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2]-a[n-3] -a[n-4] +1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5) )); // G. C. Greubel, Jul 10 2019
    
  • Maple
    L := 1,1,5,7: for i from 5 to 100 do l := nops([ L ]): L := L,op(l,[ L ])+3*op(l-1,[ L ])-op(l-2,[ L ])-op(l-3,[ L ])+1: od: [ L ];
  • Mathematica
    Join[{1,1,5,7}, Table[a[1]=1; a[2]=1; a[3]=5; a[4]=7; a[i]=a[i-1]+ 3*a[i-2]-a[i-3]-a[i-4] +1, {i, 5, 40}]]
    CoefficientList[Series[(1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5), {x, 0, 40}], x] (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)) \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    ((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
    

Formula

G.f.: (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5).
a(n+1) = a(n) + 3*a(n-1) - a(n-2) - a(n-3) + 1.