Christian Krattenthaler has authored 5 sequences.
A131658
For n >= 1, put A_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j and B_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j * (Sum__{k=j+1..j*n} (1/k)), and let u(n) be the largest integer for which exp(B_n(z)/(u(n)*A_n(z))) has integral coefficients. The sequence is u(n).
Original entry on oeis.org
1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 156764160000, 49380710400000, 217275125760000, 1086375628800000, 1738201006080000
Offset: 1
Christian Krattenthaler (Christian.Krattenthaler(AT)univie.ac.at), Sep 12 2007, Sep 30 2007
- Christian Krattenthaler, Table of n, a(n) for n = 1..40
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, arXiv:0709.1432 [math.NT], 2007-2009.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, 3(3) (2009), 555-591. [Part II appeared before Part I.]
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, Duke Math. J. 151(2) (2010), 175-218.
A131657
For n >= 1, put A_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j and B_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j * (Sum_{k=1..j*n} (1/k)), and let b(n) be the largest integer for which exp(B_n(z)/(b(n)*A_n(z))) has integral coefficients. The sequence is b(n).
Original entry on oeis.org
1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 783820800000, 9876142080000, 651825377280000, 217275125760000, 8691005030400000
Offset: 1
Christian Krattenthaler (Christian.Krattenthaler(AT)univie.ac.at), Sep 12 2007, Sep 30 2007
From _Petros Hadjicostas_, May 24 2020: (Start)
To illustrate the Krattenhaler-Rivoal conjecture consider the case n = 24. Then H_24 = Sum_{k=1..24} 1/k = 1347822955/356948592 and {p <= 24} = {2, 3, 5, 7, 11, 13, 17, 19, 23} with {v_p(numerator): p <= 24} = {0, 0, 1, 0, 0, 0, 0, 0, 0} and {v_p(denominator): p <= 24} = {4, 1, 0, 1, 1, 1, 1, 1, 1}.
Thus, the conjectured value for a(24) is 24! * (2^(0-4) * 3^(0-1) * 5^(1-0) * 7^(0-1) * 11^(0-1) * 13^(0-1) * 17^(0-1) * 19^(0-1) * 23^(0-1)) since no exponent of a prime is > 2. This product equals 8691005030400000 = a(24). (End)
- Christian Krattenthaler, Table of n, a(n) for n = 1..40
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, arXiv:0709.1432 [math.NT], 2007-2009.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, 3(3) (2009), 555-591. [Part II appeared before Part I.]
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, Duke Math. J. 151(2) (2010), 175-218.
A036687
a(n) = Product_{i=0..n} (3*i+1)! / (n+i)!.
Original entry on oeis.org
1, 12, 420, 35280, 6486480, 2473511040, 1888413246720, 2815188363187200, 8043859365429888000, 43422645527382401280000, 437806134821131674998400000, 8167684917019434265210752000000, 279763767797866931083907001600000000, 17478686582471797472931336490014720000000
Offset: 0
Christian Krattenthaler (kratt(AT)ap.UniVie.AC.AT)
A049112
2-ranks of difference sets constructed from Glynn type I hyperovals.
Original entry on oeis.org
1, 1, 3, 7, 13, 23, 45, 87, 167, 321, 619, 1193, 2299, 4431, 8541, 16463, 31733, 61167, 117903, 227265, 438067, 844401, 1627635, 3137367, 6047469, 11656871, 22469341, 43311047, 83484727, 160921985, 310187099, 597904857, 1152498667
Offset: 1
Christian Krattenthaler (kratt(AT)ap.univie.ac.at)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. Evans, H. Hollmann, C. Krattenthaler and Q. Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119.
- Ronald Evans, Henk Hollmann, Christian Krattenthaler, and Qing Xiang, Supplement to "Gauss Sums, Jacobi Sums and p-ranks ..."
- Q. Xiang, On Balanced Binary Sequences with Two-Level Autocorrelation Functions, IEEE Trans. Inform. Theory 44 (1998), 3153-3156.
-
a:=[1,3,7,13];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] +a[n-4] -1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5) )); // G. C. Greubel, Jul 10 2019
-
L := 1,1,3,7,13: for i from 6 to 140 do l := nops([ L ]): L := L,op(l,[ L ])+op(l-1,[ L ])+op(l-2,[ L ])+op(l-3,[ L ])-1: od: [ L ];
-
Join[{1,1,3,7}, Table[a[1]=3; a[2]=1; a[3]=3; a[4]=7; a[i]=a[i-1]+a[i-2] +a[i-3]+a[i-4] -1, {i,5,40}]]
CoefficientList[Series[(1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5), {x,0,40}], x] (* G. C. Greubel, Jul 10 2019 *)
-
my(x='x+O('x^40)); Vec((1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5)) \\ G. C. Greubel, Jul 10 2019
-
((1-x+x^2+x^3-x^4-2*x^5)/(1-2*x+x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
A049114
2-ranks of difference sets constructed from Glynn type II hyperovals.
Original entry on oeis.org
1, 1, 5, 7, 21, 37, 89, 173, 383, 777, 1665, 3441, 7277, 15159, 31885, 66645, 139865, 292757, 613823, 1285585, 2694433, 5644609, 11828501, 24782311, 51928773, 108802597, 227978105, 477674813, 1000877759, 2097121497, 4394101857
Offset: 1
Christian Krattenthaler (kratt(AT)ap.univie.ac.at)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. Evans, H. Hollmann, C. Krattenthaler and Q. Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119.
- Ronald Evans, Henk Hollmann, Christian Krattenthaler, and Qing Xiang, Supplement to "Gauss Sums, Jacobi Sums and p-ranks ..."
- Q. Xiang, On Balanced Binary Sequences with Two-Level Autocorrelation Functions, IEEE Trans. Inform. Theory 44 (1998), 3153-3156.
-
a:=[1,5,7,21];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2]-a[n-3] -a[n-4] +1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5) )); // G. C. Greubel, Jul 10 2019
-
L := 1,1,5,7: for i from 5 to 100 do l := nops([ L ]): L := L,op(l,[ L ])+3*op(l-1,[ L ])-op(l-2,[ L ])-op(l-3,[ L ])+1: od: [ L ];
-
Join[{1,1,5,7}, Table[a[1]=1; a[2]=1; a[3]=5; a[4]=7; a[i]=a[i-1]+ 3*a[i-2]-a[i-3]-a[i-4] +1, {i, 5, 40}]]
CoefficientList[Series[(1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5), {x, 0, 40}], x] (* G. C. Greubel, Jul 10 2019 *)
-
my(x='x+O('x^40)); Vec((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)) \\ G. C. Greubel, Jul 10 2019
-
((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
Comments