A001595 a(n) = a(n-1) + a(n-2) + 1, with a(0) = a(1) = 1.
1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, 13529, 21891, 35421, 57313, 92735, 150049, 242785, 392835, 635621, 1028457, 1664079, 2692537, 4356617, 7049155, 11405773, 18454929, 29860703, 48315633, 78176337
Offset: 0
Examples
a(7) = odd(F(7)) = odd(8) = 15. - _Carmine Suriano_, Oct 21 2010
References
- E. W. Dijkstra, 'Fibonacci numbers and Leonardo numbers', circulated privately, July 1981.
- E. W. Dijkstra, 'Smoothsort, an alternative for sorting in situ', Science of Computer Programming, 1(3): 223-233, 1982.
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Ziegenbalg, Algorithmen, Spektrum Akademischer Verlag, 1996, p. 172.
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Paula M. M. C. Catarino and Anabela Borges, On Leonardo numbers, Acta Mathematica Universitatis Comenianae (2019), 1-12.
- P. Catarino and A. Borges, A Note on Incomplete Leonardo Numbers, INTEGERS 20A (2020) A43.
- E. W. Dijkstra, Smoothsort, an alternative for sorting in situ (EWD796a).
- E. W. Dijkstra, Fibonacci numbers and Leonardo numbers (EWD797).
- Ronald Evans, Henk Hollmann, Christian Krattenthaler, and Qing Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119.
- Ronald Evans, Henk Hollmann, Christian Krattenthaler, and Qing Xiang, Supplement to "Gauss Sums, Jacobi Sums and p-Ranks ...".
- Sergio Falcon, Sum of the Squares of the Extended (k, t)-Fibonacci Numbers, Preprints 2024, 2024081150. See p. 2.
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 2.
- Yasuichi Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1019
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, On certain Fibonacci representations, arXiv:2403.15053 [math.NT], 2024. See p. 8.
- Thor Martinsen, Non-Fisherian generalized Fibonacci numbers, Notes Num. Theor. Disc. Math. (2025) Vol. 31, No. 2, 370-389. See p. 388.
- Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Diana Savin and Elif Tan, On Companion sequences associated with Leonardo quaternions: Applications over finite fields, arXiv:2403.01592 [math.CO], 2024. See p. 2.
- David Singmaster, Some counterexamples and problems on linear recurrences and part 2, Fib. Quart. 8 (1970), 264-267.
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 24.
- Hunar Sherzad Taher and Saroj Kumar Dash, Fibonacci Numbers that Are eta-concatenations of Leonardo and Lucas Numbers, Proc. Bulgar. Acad. Sci. (2025) Vol. 78, No. 2, 171-180.
- Elif Tan and Ho-Hon Leung, On Leonardo p-Numbers, Integers (2023) Vol. 23, #A7.
- Bibhu Prasad Tripathy and Bijan Kumar Patel, Common Values of Generalized Fibonacci and Leonardo Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.6.2.
- Qing Xiang, On Balanced Binary Sequences with Two-Level Autocorrelation Functions, IEEE Trans. Inform. Theory 44 (1998), 3153-3156.
- Tülay Yaǧmur, On Gaussian Leonardo Hybrid Polynomials, Symmetry (2023) Vol. 15, No. 7, 1422.
- Feng-Zhen Zhao, The log-behavior of some sequences related to the generalized Leonardo numbers, Integers (2024) Vol. 24, Art. No. A82.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Programs
-
GAP
List([0..40], n-> 2*Fibonacci(n+1) -1); # G. C. Greubel, Jul 10 2019
-
Haskell
a001595 n = a001595_list !! n a001595_list = 1 : 1 : (map (+ 1) $ zipWith (+) a001595_list $ tail a001595_list) -- Reinhard Zumkeller, Aug 14 2011
-
Magma
[2*Fibonacci(n+1)-1: n in [0..40]]; // G. C. Greubel, Jul 10 2019
-
Maple
L := 1,3: for i from 3 to 40 do l := nops([ L ]): L := L,op(l,[ L ])+op(l-1,[ L ])+1: od: [ L ]; A001595:=(1-z+z**2)/(z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation with(combinat): seq(fibonacci(n-1)+fibonacci(n+2)-1, n=0..40); # Zerinvary Lajos, Jan 31 2008
-
Mathematica
Join[{1, 3}, Table[a[1]=1; a[2]=3; a[i]=a[i-1]+a[i-2]+1, {i, 3, 40} ] ] Table[2*Fibonacci[n+1]-1, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009; modified by G. C. Greubel, Jul 10 2019 *) RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+a[n-2]+1},a,{n,40}] (* or *) LinearRecurrence[{2,0,-1},{1,1,3},40] (* Harvey P. Dale, Aug 07 2012 *)
-
PARI
a(n) = 2*fibonacci(n+1)-1 \\ Franklin T. Adams-Watters, Sep 30 2009
-
Python
from sympy import fibonacci def A001595(n): return (fibonacci(n+1)<<1)-1 # Chai Wah Wu, Sep 10 2024
-
Sage
[2*fibonacci(n+1)-1 for n in (0..40)] # G. C. Greubel, Jul 10 2019
Formula
a(n) = 2*Fibonacci(n+1) - 1 = A006355(n+2) - 1. - Richard L. Ollerton, Mar 22 2002
G.f.: (1-x+x^2)/(1-2x+x^3) = 2/(1-x-x^2) - 1/(1-x). [Conjectured by Simon Plouffe in his 1992 dissertation; this is readily verified.]
a(n) = (2/sqrt(5))*((1+sqrt(5))/2)^(n+1) - 2/sqrt(5)*((1-sqrt(5))/2)^(n+1) - 1.
a(n+1)/a(n) is asymptotic to Phi = (1+sqrt(5))/2. - Jonathan Vos Post, May 26 2005
For n >= 2, a(n+1) = ceiling(Phi*a(n)). - Franklin T. Adams-Watters, Sep 30 2009
a(n) = Sum_{k=0..n+1} A109754(n-k+1,k) - Sum_{k=0..n} A109754(n-k,k) = Sum_{k=0..n+1} A101220(n-k+1,0,k) - Sum_{k=0..n} A101220(n-k,0,k). - Ross La Haye, May 31 2006
a(n) = Fibonacci(n-1) + Fibonacci(n+2) - 1. - Zerinvary Lajos, Jan 31 2008, corrected by R. J. Mathar, Dec 17 2010
a(n) = 2*a(n-1) - a(n-3); a(0)=1, a(1)=1, a(2)=3. - Harvey P. Dale, Aug 07 2012
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x). - Stefano Spezia, Jan 23 2024
Extensions
Additional comments from Christian Krattenthaler (kratt(AT)ap.univie.ac.at)
Further edits from Franklin T. Adams-Watters, Sep 30 2009, and N. J. A. Sloane, Oct 03 2009
Comments