cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001595 a(n) = a(n-1) + a(n-2) + 1, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, 13529, 21891, 35421, 57313, 92735, 150049, 242785, 392835, 635621, 1028457, 1664079, 2692537, 4356617, 7049155, 11405773, 18454929, 29860703, 48315633, 78176337
Offset: 0

Views

Author

Keywords

Comments

2-ranks of difference sets constructed from Segre hyperovals.
Sometimes called Leonardo numbers. - George Pollard, Jan 02 2008
a(n) is the number of nodes in the Fibonacci tree of order n. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node (see the Knuth reference, p. 417). - Emeric Deutsch, Jun 14 2010
Also odd numbers whose index is a Fibonacci number: odd(Fib(k)). - Carmine Suriano, Oct 21 2010
This is the sequence A(1,1;1,1;1) of the family of sequences [a,b:c,d:k] considered by Gary Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 17 2010
In general, adding a constant to each successive term of a Horadam sequence with signature (c,d) will result in a third-order recurrence with signature (c+1, d-c,-d). - Gary Detlefs, Feb 01 2023

Examples

			a(7) = odd(F(7)) = odd(8) = 15. - _Carmine Suriano_, Oct 21 2010
		

References

  • E. W. Dijkstra, 'Fibonacci numbers and Leonardo numbers', circulated privately, July 1981.
  • E. W. Dijkstra, 'Smoothsort, an alternative for sorting in situ', Science of Computer Programming, 1(3): 223-233, 1982.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Ziegenbalg, Algorithmen, Spektrum Akademischer Verlag, 1996, p. 172.

Crossrefs

Programs

  • GAP
    List([0..40], n-> 2*Fibonacci(n+1) -1); # G. C. Greubel, Jul 10 2019
    
  • Haskell
    a001595 n = a001595_list !! n
    a001595_list =
       1 : 1 : (map (+ 1) $ zipWith (+) a001595_list $ tail a001595_list)
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    [2*Fibonacci(n+1)-1: n in [0..40]]; // G. C. Greubel, Jul 10 2019
    
  • Maple
    L := 1,3: for i from 3 to 40 do l := nops([ L ]): L := L,op(l,[ L ])+op(l-1,[ L ])+1: od: [ L ];
    A001595:=(1-z+z**2)/(z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation
    with(combinat): seq(fibonacci(n-1)+fibonacci(n+2)-1, n=0..40); # Zerinvary Lajos, Jan 31 2008
  • Mathematica
    Join[{1, 3}, Table[a[1]=1; a[2]=3; a[i]=a[i-1]+a[i-2]+1, {i, 3, 40} ] ]
    Table[2*Fibonacci[n+1]-1, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009; modified by G. C. Greubel, Jul 10 2019 *)
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+a[n-2]+1},a,{n,40}] (* or *) LinearRecurrence[{2,0,-1},{1,1,3},40] (* Harvey P. Dale, Aug 07 2012 *)
  • PARI
    a(n) = 2*fibonacci(n+1)-1 \\ Franklin T. Adams-Watters, Sep 30 2009
    
  • Python
    from sympy import fibonacci
    def A001595(n): return (fibonacci(n+1)<<1)-1 # Chai Wah Wu, Sep 10 2024
  • Sage
    [2*fibonacci(n+1)-1 for n in (0..40)] # G. C. Greubel, Jul 10 2019
    

Formula

a(n) = 2*Fibonacci(n+1) - 1 = A006355(n+2) - 1. - Richard L. Ollerton, Mar 22 2002
G.f.: (1-x+x^2)/(1-2x+x^3) = 2/(1-x-x^2) - 1/(1-x). [Conjectured by Simon Plouffe in his 1992 dissertation; this is readily verified.]
a(n) = (2/sqrt(5))*((1+sqrt(5))/2)^(n+1) - 2/sqrt(5)*((1-sqrt(5))/2)^(n+1) - 1.
a(n+1)/a(n) is asymptotic to Phi = (1+sqrt(5))/2. - Jonathan Vos Post, May 26 2005
For n >= 2, a(n+1) = ceiling(Phi*a(n)). - Franklin T. Adams-Watters, Sep 30 2009
a(n) = Sum_{k=0..n+1} A109754(n-k+1,k) - Sum_{k=0..n} A109754(n-k,k) = Sum_{k=0..n+1} A101220(n-k+1,0,k) - Sum_{k=0..n} A101220(n-k,0,k). - Ross La Haye, May 31 2006
a(n) = A000071(n+3) - A000045(n). - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
a(n) = Fibonacci(n-1) + Fibonacci(n+2) - 1. - Zerinvary Lajos, Jan 31 2008, corrected by R. J. Mathar, Dec 17 2010
a(n) = 2*a(n-1) - a(n-3); a(0)=1, a(1)=1, a(2)=3. - Harvey P. Dale, Aug 07 2012
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x). - Stefano Spezia, Jan 23 2024

Extensions

Additional comments from Christian Krattenthaler (kratt(AT)ap.univie.ac.at)
Further edits from Franklin T. Adams-Watters, Sep 30 2009, and N. J. A. Sloane, Oct 03 2009

A049114 2-ranks of difference sets constructed from Glynn type II hyperovals.

Original entry on oeis.org

1, 1, 5, 7, 21, 37, 89, 173, 383, 777, 1665, 3441, 7277, 15159, 31885, 66645, 139865, 292757, 613823, 1285585, 2694433, 5644609, 11828501, 24782311, 51928773, 108802597, 227978105, 477674813, 1000877759, 2097121497, 4394101857
Offset: 1

Views

Author

Christian Krattenthaler (kratt(AT)ap.univie.ac.at)

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,5,7,21];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2]-a[n-3] -a[n-4] +1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5) )); // G. C. Greubel, Jul 10 2019
    
  • Maple
    L := 1,1,5,7: for i from 5 to 100 do l := nops([ L ]): L := L,op(l,[ L ])+3*op(l-1,[ L ])-op(l-2,[ L ])-op(l-3,[ L ])+1: od: [ L ];
  • Mathematica
    Join[{1,1,5,7}, Table[a[1]=1; a[2]=1; a[3]=5; a[4]=7; a[i]=a[i-1]+ 3*a[i-2]-a[i-3]-a[i-4] +1, {i, 5, 40}]]
    CoefficientList[Series[(1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5), {x, 0, 40}], x] (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)) \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    ((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
    

Formula

G.f.: (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5).
a(n+1) = a(n) + 3*a(n-1) - a(n-2) - a(n-3) + 1.
Showing 1-2 of 2 results.