A376081 Irregular triangle read by rows: row n is the periodic part of the Leonardo numbers (A001595) modulo n.
0, 1, 1, 1, 0, 2, 0, 0, 1, 2, 1, 1, 3, 1, 1, 3, 0, 4, 0, 0, 1, 2, 4, 2, 2, 0, 3, 4, 3, 3, 2, 1, 4, 1, 1, 3, 5, 3, 3, 1, 5, 1, 1, 3, 5, 2, 1, 4, 6, 4, 4, 2, 0, 3, 4, 1, 6, 1, 1, 3, 5, 1, 7, 1, 1, 3, 5, 0, 6, 7, 5, 4, 1, 6, 8, 6, 6, 4, 2, 7, 1, 0, 2, 3, 6, 1, 8
Offset: 1
Examples
Triangle begins: [1] 0; [2] 1; [3] 1, 1, 0, 2, 0, 0, 1, 2; [4] 1, 1, 3; [5] 1, 1, 3, 0, 4, 0, 0, 1, 2, 4, 2, 2, 0, 3, 4, 3, 3, 2, 1, 4; [6] 1, 1, 3, 5, 3, 3, 1, 5; [7] 1, 1, 3, 5, 2, 1, 4, 6, 4, 4, 2, 0, 3, 4, 1, 6; [8] 1, 1, 3, 5, 1, 7; [9] 1, 1, 3, 5, 0, 6, 7, 5, 4, 1, 6, 8, 6, 6, 4, 2, 7, 1, 0, 2, 3, 6, 1, 8; ... For n = 8: A001595 = 1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, ... A001595 mod 8 = 1, 1, 3, 5, 1, 7, 1, 1, 3, 5, 1, 7, 1, ... \_______________/ periodic part
Links
- Paolo Xausa, Table of n, a(n) for n = 1..12347 (rows 1..150 of triangle, flattened).
- Wikipedia, Leonardo number.
Comments