A123744
Circulants of Fibonacci numbers (including F_0 = 0).
Original entry on oeis.org
1, 0, 1, 2, 16, 287, 16128, 2192140, 830952837, 805644641664, 2080690769701456, 14002804169885909807, 247753675148653634781184, 11469641168045182197979378136, 1391545878431673359565624090480585, 442017027765434652128920030338417270784, 367683484076057642925500106042968712221296320
Offset: 0
n=4: the circular 4 X 4 matrix is M(4) = matrix([[2,1,1,0],[0,2,1,1],[1,0,2,1],[1,1,0,2]]).
n=4: 4th roots of unity: rho_4 = I, (rho_4)^2 = -1, (rho_4)^3 = -I, (rho_4)^4 =1, with I^2=-1. A123744 n=4: the eigenvalues of M(4) are therefore: 0*I^k + 1*(-1)^k + 1*(-I)^k + 2*1^k, k=1,...,4, namely 1-I, 2, 1+I, 4.
n=4: a(4)= Det(M(4)) = 16 = (1-I)*2*(1+I)*4.
- P. J. Davis, Circulant Matrices, J. Wiley, New York, 1979.
Cf.
A123745 (other Fibonacci circulants without F_0 = 0).
Cf.
A081131 (with n instead of Fibonacci(n)).
-
mm(n) = matdet(matrix(n, n, i, j, fibonacci(n-1-lift(Mod(j-i, n))))); \\ Michel Marcus, Aug 11 2019
A384592
a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(1), F(2), ..., F(n)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
Original entry on oeis.org
0, -1, -6, -150, -5370, -800640, -190224111, -176905217601, -291774510700416, -1732081174959242854, -20169113574187183899414, -780617739418078727245260288, -64339950490716309261029142530799, -16501635484912814610105139633118406681
Offset: 1
The rows of M(4) are (1,1,2,3), (3,1,1,2), (23,1,1), (1,2,3,1); determinant(M(4)) = -35; permanent(M(4)) = 265, so neg(M(4)) = (-35 -265)/2 = -150 and pos(M(4)) = (-35 + 265)/2 = 115.
-
z = 14;
v[n_] := Table[Fibonacci[k], {k, 1, n}];
u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]]
Table[Permanent[u[n]], {n, 1, z}] (* A384591 *)
d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A123745, with alternating signs *)
neg = (d - p)/2 (* A384592 *)
pos = (d + p)/2 (* A384593 *)
A384593
a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(1), F(2), ..., F(n)), where F = A000045 (Fibonacci numbers), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
Original entry on oeis.org
1, 1, 10, 115, 7182, 630400, 236525784, 146492200737, 343945864714624, 1504008427530969535, 22752527891269251753118, 704885020930148344661403136, 70113811460119152088048405685808, 15355281759224121782879344275585373609
Offset: 1
The rows of M(4) are (1,1,2,3), (3,1,1,2), (2,3,1,1), (1,2,3,1); determinant(M(4)) = -35; permanent(M(4)) = 265, so neg(M(4)) = (-35 - 265)/2 = -150 and pos(M(4)) = (-35 + 265)/2 = 115.
-
z = 14;
v[n_] := Table[Fibonacci[k], {k, 1, n}];
u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]]
Table[Permanent[u[n]], {n, 1, z}] (* A384591 *)
d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A123745, with alternating signs *)
neg = (d - p)/2 (* A384592 *)
pos = (d + p)/2 (* A384593 *)
A145570
Circulants of Catalan numbers.
Original entry on oeis.org
1, 0, 4, 459, 474743, 5237087765, 686666209113536, 1140713637429903585344, 24957776794187383667855422048, 7377122100200717681983830999516060000, 30004208141654594144715773978429859682880072414, 1703184026083327296951313841743251806796128938200000000000, 1365027457901516492029047382022588117973123824294791438142988114734512
Offset: 1
n=4: the circular 4 X 4 matrix is M(4) = matrix([[5,2,1,1],[1,5,2,1],[1,1,5,2],[2,1,1,5]]).
n=4: 4th roots of unity: rho_4 = I, (rho_4)^2 = -1, (rho_4)^3 = -I, (rho_4)^4 =1, with I^2=-1.
n=4: the eigenvalues of M(4) are therefore: 1*I^k + 1*(-1)^k + 2*(-I)^k + 5*1^k, k=1,..,4, namely 4-I, 3, 4+I, 9.
n=4: a(4)= Det(M(4)) = (4-I)*3*(4+I)*9 = 459.
- P. J. Davis, Circulant Matrices, J. Wiley, New York, 1979.
-
rho[n_] := Exp[2*I*Pi/n]; lambda[n_, k_] := Sum[ CatalanNumber[j - 1]*rho[n]^(j*k), {j, 1, n}]; a[n_?EvenQ] := FullSimplify[ Product[ lambda[n, k], {k, 1, n}]]; a[n_?OddQ] := Expand[ Product[ lambda[n, k], {k, 1, n}]] /. Plus[x_Integer, Times[y_Integer, Power[E, Times[ Complex[0, Rational[, FactorInteger[n][[1, 1]]]], Pi]]], _] -> x - y; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Sep 27 2011 *)
Showing 1-4 of 4 results.
Comments