cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A086569 Product of the nonzero eigenvalues of the circulant matrix whose rows are formed by successively rotating a vector of binomial coefficients right. Generalization of A048954.

Original entry on oeis.org

1, -3, 28, -375, 3751, -49392, 6835648, -1343091375, 364668913756, -210736858987743, 101832157445630503, -67043511427995648000, 487627751563388801409591, -4875797582053878382039400448, 58623274842128064372315087290368
Offset: 1

Views

Author

T. D. Noe, Jul 21 2003

Keywords

Comments

In sequence A048954, a determinant of a circulant matrix, a(n) = 0 when 6 divides n. The determinant of a matrix can be interpreted as the signed volume of a simplex whose vertices are given by the rows of the matrix. For n a multiple of 6, the points form a lower dimensional simplex that has zero volume in n-space. However, the volume in n-2 space is positive and is given by the product of the nonzero eigenvalues.

Examples

			a(6) = -49392 because -1, -28, -28 and 63 are the four nonzero eigenvalues of the matrix {{1,6,15,20,15,6}, {6,1,6,15,20,15}, {15,6,1,6,15,20}, {20,15,6,1,6,15}, {15,20,15,6,1,6}, {6,15,20,15,6,1}}.
		

References

Crossrefs

Cf. A048954, A086459 (circulant of powers of 2).

Programs

  • Mathematica
    Table[x=Binomial[n, Range[0, n-1]]; m=Table[RotateRight[x, i-1], {i, n}]; e=Eigenvalues[m]; prod=1; Do[If[e[[i]]!=0, prod=prod*e[[i]]], {i, n}]; FullSimplify[prod], {n, 15}]

A215615 From Wendt's determinant compute sqrt(abs(A048954(n))/(2^n - 1)).

Original entry on oeis.org

1, 1, 2, 5, 11, 0, 232, 2295, 26714, 453871, 7053157, 0, 7715707299, 545539395584, 42297694603648, 4883188189089105, 531361846217471443, 0, 28649272821614715410221, 14214363393075742724609375, 7526219790642312236217153392, 5968603205606800870499639536231
Offset: 1

Views

Author

Jonathan Sondow, Aug 17 2012

Keywords

Comments

E. Lehmer claimed, and J. S. Frame proved, that a(n) is an integer (Ribenboim 1999, p. 128).
The subsequence for even n is A129205.
See A048954 for additional comments, references, links, and cross-references.

References

  • P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer-Verlag, NY, 1999, pp. 126, 136.

Crossrefs

Programs

  • Mathematica
    w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[ Sqrt[Abs[w[n]]/(2^n - 1)], {n, 25}]

Formula

a(n) = ((-1)^(n-1)*A048954(n)/(2^n - 1))^(1/2).

A215616 From Wendt's determinant compute (-A048954(2*n)/3)^(1/3).

Original entry on oeis.org

1, 5, 0, 765, 41261, 0, 1175731456, 804611664045, 0, 4133434158867578125, 36792671310208420147421, 0, 33666995638445382179718361163901, 3930778415673723952392425569428439040, 0, 637350736211692642266912139961455499346709367565
Offset: 1

Views

Author

Jonathan Sondow, Aug 17 2012

Keywords

Comments

It is known that 3 divides A048954(2*n). It is conjectured that the quotient is a perfect cube.
See A048954 for additional comments, references, links, and cross-references.

Crossrefs

Programs

  • Mathematica
    w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[(-w[2 n]/3)^(1/3), {n, 19}]

Formula

a(n) = (-A048954(2*n)/3)^(1/3).
a(n) = 0 if and only if n is divisible by 3.

A129205 From Wendt's determinant compute (A048954(2*n)/(1-4^n))^(1/2).

Original entry on oeis.org

1, 5, 0, 2295, 453871, 0, 545539395584, 4883188189089105, 0, 14214363393075742724609375, 5968603205606800870499639536231, 0, 41302584753289717847206700750464023881130441
Offset: 1

Views

Author

Michael Somos, Apr 03 2007

Keywords

References

  • P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer-Verlag, NY, 1979, page 62. MR0551363 (81f:10023)

Crossrefs

Programs

  • PARI
    {a(n)= if(n<1, 0, n*=2; sqrtint( matdet( matrix( n, n, i, j, binomial( n, (j-i)%n )))/ (1-2^n)))}

Formula

a(n)=0 if and only if n is divisible by 3.
a(n) = A215615(2*n). - Jonathan Sondow, Aug 17 2012

A336280 Number of consecutive primes of the form k*prime(n) + 1, starting with the least such prime A035095(n), that divides the Wendt determinant A048954(prime(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 2, 3, 2, 3, 1, 5, 6, 2, 6, 3, 3, 3, 1, 6, 3, 5, 5, 7, 5, 5, 6, 7, 4, 7, 5, 10, 10, 4, 4, 6, 10, 3, 4, 12, 11, 5, 7, 8, 7, 8, 11, 4, 4, 4, 14, 7, 11, 7, 13, 11, 13, 7, 18, 18, 6, 7, 17, 12, 9, 7, 9, 14, 12, 9, 16, 14, 11, 13, 10
Offset: 1

Views

Author

Frank M Jackson and Michael B Rees, Jul 15 2020

Keywords

Comments

Michael B Rees has conjectured that:
1. for every prime p, the Wendt determinant Wendt(p) has all its prime factors that are greater than p of the form k*p + 1.
2. for every prime p = prime(n) and its corresponding Wendt determinant W(p) there exists a finite number of m consecutive primes (p_1,p_2,..,p_m) of the form k*p + 1 that will divide Wendt(p) where p_1 is always the least prime of the form k*p + 1.
This sequence gives the value m for each p = prime(n).

Examples

			a(6) = 3 gives p = prime(6) = 13 and W(13) = 3^6*53^2*79^2*131^2*521^2*8191. The sequence of primes of the form q = k*13 + 1, starting with the least such prime 53 that divide W(11) is (53, 79, 131). The sequence has 3 terms.
		

Crossrefs

Programs

  • Mathematica
    w[n_] := Module[{x}, Resultant[x^n-1, (1+x)^n-1, x]]; k[n_, m_] := Module[{p=Prime@n, q=0, lst={}}, Do[q++; While[! PrimeQ[p*q+1], q++]; AppendTo[lst, q], {m}]; lst];
    lst1 = {}; Do[lst=k[n, 50]*Prime[n]+1; m = 1; Do[If[IntegerQ[w[Prime[n]]/lst[[m]]]&&m<=Length@lst, m++, Break[]], {Length@lst}]; AppendTo[lst1, m-1], {n, 1, 75}]; lst1

A335507 Index of the least Wendt determinant (A048954) divisible by prime(n).

Original entry on oeis.org

3, 2, 4, 3, 5, 28, 8, 9, 11, 7, 5, 9, 20, 14, 23, 13, 29, 15, 11, 35, 9, 13, 41, 11, 32, 25, 17, 53, 27, 28, 7, 13, 17, 23, 37, 15, 39, 27, 83, 43, 89, 45, 19, 32, 28, 11, 21, 37, 113, 19, 29, 34, 40, 25, 16, 131, 67, 15, 69, 35, 47, 73, 17, 31, 39, 79, 33, 21, 173, 29, 32, 179
Offset: 1

Views

Author

Frank M Jackson and Michael B Rees, Jun 11 2020

Keywords

Comments

It has been conjectured by Michael B Rees that there exists for every prime a Wendt determinant divisible by that prime. However the conjecture has been proved for all prime divisors equivalent to -1 (mod 6) - (see Lehmer link below).

Examples

			a(5) = 5 because Wendt(5) = 3751 = 11^2*131. It is divisible by prime(5) = 11 and Wendt(5) is the least Wendt determinant divisible by 11.
		

Crossrefs

Cf. A048954.

Programs

  • Mathematica
    Wendt[n_]:=Module[{x},Resultant[x^n-1,(1+x)^n-1,x]];
    findW[n_]:= Module[{m=1},While[!IntegerQ[Wendt[m]/n]||Mod[m,6]==0,m++];m];
    Table[findW[Prime[n]],{n,1,100}]

A335970 Index of the least Wendt determinant (A048954(k)) that is divisible by the least prime of the form k*prime(n) + 1.

Original entry on oeis.org

3, 10, 26, 28, 32, 46, 38, 58, 44, 110, 22, 88, 122, 70, 134, 44, 164, 70, 106, 212, 94, 70, 146, 128, 208, 62, 142, 116, 310, 56, 94, 212, 86, 280, 320, 262, 316, 82, 110, 122, 182, 160, 362, 142, 284, 280, 340, 112, 56, 64, 254, 308, 250, 368, 104, 272, 242, 292, 226
Offset: 1

Views

Author

Frank M Jackson and Michael B Rees, Jul 03 2020

Keywords

Comments

It has been conjectured by Michael B Rees that for every prime p there exists a Wendt determinant index j such that for all j < k primes of the form j*p + 1 will not divide Wendt(j). This sequence gives the least index k such that Wendt(k) is divisible by the least prime of the form k*p + 1 for each prime p = prime(n).

Examples

			a(2) = 10 gives k = 10, Wendt(10) = -210736858987743 = -1*3*11^9*31^3 and p = prime(2) = 3. Hence with k = 10 and p = 3, Wendt(k) is the least Wendt determinant divisible by the least prime of the form p*k + 1.
		

Crossrefs

Cf. A048954.

Programs

  • Mathematica
    w[n_] := Module[{x}, Resultant[x^n-1, (1+x)^n-1, x]]; lst = {}; Do[q=1; While[Mod[q, 6]==0||!PrimeQ[r=1+Prime[n]*q]||!IntegerQ[w[q]/r], q++]; AppendTo[lst, q], {n, 1, 60}]; lst

A336688 Primes p such that the Wendt determinant A048954(p) has prime factors less than p.

Original entry on oeis.org

3, 7, 13, 31, 73, 127, 307, 331, 757
Offset: 1

Views

Author

Frank M Jackson and Michael B Rees, Jul 31 2020

Keywords

Comments

Michael B Rees has conjectured that for all primes p, each fully exponentiated prime factor less than p that divides the Wendt determinant W(p), if it exists, is of the form k*p + 1.
This sequence identifies the prime index p of Wendt determinants W(p) that have prime factors less than p.
These prime indices appear to be a subset of the lucky primes A031157.

Examples

			a(3) = 13. The Wendt determinant with a prime index p = 13 has prime factors less than p. W(13) = 3^6*53^2*79^2*131^2*521^2*8191 and 3^6 = 729 is of the form k*13 + 1. It is the 3rd occurrence of such a determinant.
		

Crossrefs

Programs

  • Mathematica
    w[n_] := Resultant[x^n-1, (1+x)^n-1, x]; getp[n_] := Module[{W=w[n], lst=Table[Prime[m], {m, 1, PrimePi[n]}], lst1={}, j, k, l}, Do[j=1; While[W>0&&IntegerQ[W/lst[[l]]^j], j++]; If[j-1>0, AppendTo[lst1, {lst[[l]], j-1}]], {l, 1, Length@lst}]; Join[{n}, lst1]]; lst = {}; Do[lst1=getp[Prime[n]]; If[Length@lst1>1, AppendTo[lst, lst1[[1]]]], {n, 1, PrimePi[331]}]; lst

Extensions

a(9) from Jinyuan Wang, Sep 04 2020

A086459 Determinant of the circulant matrix whose rows are formed by successively rotating the vector (1, 2, 4, 8, ..., 2^(n-1)) right.

Original entry on oeis.org

1, -3, 49, -3375, 923521, -992436543, 4195872914689, -70110209207109375, 4649081944211090042881, -1227102111503512992112190463, 1291749870339606615892191271170049, -5429914198235566686555216227881787109375
Offset: 1

Views

Author

T. D. Noe, Jul 21 2003

Keywords

Comments

Note that if the rows are rotated left instead of right, the sign of the terms for which n = 0 or 3 (mod 4) is reversed. The n eigenvalues of these circulant matrices lie on the circle of radius 2(2^n - 1)/3 centered at x = (2^n - 1)/3, y = 0. This sequence can be generalized to bases other than 2 and similar results are true.

Examples

			a(3) = determinant of the matrix ((1,2,4),(4,1,2),(2,4,1)) = 49. [Corrected by _T. D. Noe_, Jan 22 2008]
		

References

  • Richard Bellman, Introduction to Matrix Analysis, Second Edition, SIAM, 1970, pp. 242-3.
  • Philip J. Davis, Circulant Matrices, Second Edition, Chelsea, 1994.

Crossrefs

Cf. A048954 (circulant of binomial coefficients), A052182 (circulant of natural numbers), A066933 (circulant of prime numbers).
Cf. A180602 (unsigned, offset 0). [Paul D. Hanna, Sep 11 2010]

Programs

  • Maple
    restart:with (combinat):a:=n->mul(-stirling2(n,2), j=3..n): seq(a(n), n=2..19); # Zerinvary Lajos, Jan 01 2009
  • Mathematica
    Table[x=2^Range[0, n-1]; m=Table[RotateRight[x, i-1], {i, n}]; Det[m], {n, 12}]

Formula

a(n) = (-2^n + 1)^(n-1).
See formulas in A180602, an unsigned version of this sequence with offset 0. [Paul D. Hanna, Sep 11 2010]

A118713 a(n) = determinant of n X n circulant matrix whose first row is A001358(1), A001358(2), ..., A001358(n) where A001358(n) = n-th semiprime.

Original entry on oeis.org

4, -20, 361, -3567, 218053, -3455872, 736439027, -16245418225, 1519211613654, -37662452460912, 20199655476042865, -643524421698841536, 46513669467992431114, -3754367220494585505280, 277686193779526116536293, -123973821931125256333959105, 20103033234038999233385180658
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Comments

Semiprime analog of A066933 Circulant of prime numbers. a(n) alternates in sign. A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A086459 Circulant of powers of 2.

Examples

			a(2) = -20 = determinant
|4,6|
|6,4|.
a(3) = 361 = 19^2 = determinant
|4,6,9|
|9,4,6|
|6,9,4|.
		

Crossrefs

Programs

  • Maple
    A118713 := proc(n)
        local C,r,c ;
        C := Matrix(1..n,1..n) ;
        for r from 1 to n do
        for c from 1 to n do
            C[r,c] := A001358(1+((c-r) mod n)) ;
        end do:
        end do:
        LinearAlgebra[Determinant](C) ;
    end proc:
    seq(A118713(n),n=1..13) ;
  • Mathematica
    nmax = 13;
    sp = Select[Range[3 nmax], PrimeOmega[#] == 2&];
    a[n_] := Module[{M}, M[1] = sp[[1 ;; n]];
       M[k_] := M[k] = RotateRight[M[k - 1]];
       Det[Table[M[k], {k, 1, n}]]];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 16 2023 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Aug 23 2007
Showing 1-10 of 19 results. Next