A048954 Wendt determinant of n-th circulant matrix C(n).
1, -3, 28, -375, 3751, 0, 6835648, -1343091375, 364668913756, -210736858987743, 101832157445630503, 0, 487627751563388801409591, -4875797582053878382039400448, 58623274842128064372315087290368, -1562716604740038367719196682456673375
Offset: 1
Examples
a(2) = det [ 1 2 ; 2 1 ] = -3. a(3) = det [ 1 3 3 ; 3 1 3 ; 3 3 1 ] = 28. a(4) = det [ 1 4 6 4 ; 4 1 4 6 ; 6 4 1 4 ; 4 6 4 1 ] = -375.
References
- P. Ribenboim, "Fermat's Last Theorem for Amateurs", Springer-Verlag, NY, 1999, pp. 126, 136.
- P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer-Verlag, NY, 1979, pp. 61-63. MR0551363 (81f:10023).
Links
- T. D. Noe, Table of n, a(n) for n=1..50
- David W. Boyd, The asymptotic behaviour of the binomial circulant determinant, Journal of Mathematical Analysis and Applications, Volume 86, Issue 1, March 1982, Pages 30-38.
- E. Brown and M. Chamberland, Generalizing Gauss's Gem, Amer. Math. Monthly, 119 (No. 7, 2012), 597-601. - _N. J. A. Sloane_, Sep 07 2012
- D. Burde and W. A. Moens, The structure of Lie algebras with a derivation satisfying a polynomial identity, arXiv:2009.05434 [math.RA], 2020.
- L. Carlitz, A determinant connected with Fermat's last theorem, Proc. Amer. Math. Soc. 10 (1959), 686-690.
- L. Carlitz, A determinant connected with Fermat's last theorem, Proc. Amer. Math. Soc. 11 (1960), 730-733.
- Joshua Cooper and Zhibin Du, Note on the spectra of Steiner distance hypermatrices, arXiv:2403.02287 [math.CO], 2024. See pp. 2, 4.
- Greg Fee and Andrew Granville, The prime factors of Wendt's binomial circulant determinant, Math. Comp. 57 (1991), 839-848.
- David Ford and Vijay Jha, On Wendt's Determinant and Sophie Germain's Theorem, Experimental Mathematics, 2 (1993) No. 2, 113-120.
- J. S. Frame, Factors of the binomial circulant determinant, Fibonacci Quart., 18 (1980), pp. 9-23.
- Charles Helou, On Wendt's Determinant, Math. Comp., 66 (1997) No. 219, 1341-1346.
- Charles Helou and Guy Terjanian, Arithmetical properties of wendt's determinant, Journal of Number Theory, Volume 115, Issue 1, November 2005, Pages 45-57.
- Emma Lehmer, On a resultant connected with Fermat's last theorem, Bull. Amer. Math. Soc. 41 (1935), 864-867.
- Gerard P. Michon, Factorization of Wendt's Determinant (table for n=1 to 114)
- Anastasios Simalarides, Upper bounds for the prime divisors of Wendt's determinant, Math. Comp., 71 (2002), 415-427.
- Eric Weisstein's World of Mathematics, Circulant matrix
- E. Wendt, Arithmetische Studien über den letzten Fermatschen Satz, welcher aussagt, dass die Gleichung a^n=b^n+c^n für n>2 in ganzen Zahlen nicht auflösbar ist, Reimer (Berlin), 1894.
Crossrefs
Programs
-
Mathematica
a[ n_] := Resultant[ x^n - 1, (1+x)^n - 1, x];
-
PARI
{a(n) = if( n<1, 0, matdet( matrix( n, n, i, j, binomial( n, (j-i)%n ))))}
-
PARI
a(n) = polresultant( x^n - 1, (1+x)^n - 1, x )
Formula
a(2*n) = A129205(n)^2 * (1-4^n).
a(n) = 0 if and only if 6 divides n. If d divides n, then a(d) divides a(n). - Michael Somos, Apr 03 2007
a(n) = (-1)^(n-1) * (2^n - 1) * A215615(n)^2. - Jonathan Sondow, Aug 17 2012
a(2*n) = -3 * A215616(n)^3. - Jonathan Sondow, Aug 18 2012
Extensions
Additional comments from Michael Somos, May 27 2000 and Dec 16 2001
Comments