A086459
Determinant of the circulant matrix whose rows are formed by successively rotating the vector (1, 2, 4, 8, ..., 2^(n-1)) right.
Original entry on oeis.org
1, -3, 49, -3375, 923521, -992436543, 4195872914689, -70110209207109375, 4649081944211090042881, -1227102111503512992112190463, 1291749870339606615892191271170049, -5429914198235566686555216227881787109375
Offset: 1
a(3) = determinant of the matrix ((1,2,4),(4,1,2),(2,4,1)) = 49. [Corrected by _T. D. Noe_, Jan 22 2008]
- Richard Bellman, Introduction to Matrix Analysis, Second Edition, SIAM, 1970, pp. 242-3.
- Philip J. Davis, Circulant Matrices, Second Edition, Chelsea, 1994.
Cf.
A048954 (circulant of binomial coefficients),
A052182 (circulant of natural numbers),
A066933 (circulant of prime numbers).
-
restart:with (combinat):a:=n->mul(-stirling2(n,2), j=3..n): seq(a(n), n=2..19); # Zerinvary Lajos, Jan 01 2009
-
Table[x=2^Range[0, n-1]; m=Table[RotateRight[x, i-1], {i, n}]; Det[m], {n, 12}]
A180606
G.f.: A(x) = exp( Sum_{n>=1} (2^n-1)^(n-1)*x^n/n ).
Original entry on oeis.org
1, 1, 2, 18, 862, 185582, 165592644, 599576207236, 8764375895813558, 516573425446007525398, 122710727732550268600238492, 117431929105754130321446873061820
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 18*x^3 + 862*x^4 + 185582*x^5 +...
log(A(x)) = x + 3*x^2/2 + 7^2*x^3/3 + 15^3*x^4/4 + 31^4*x^5/5 +...
A202990
E.g.f: Sum_{n>=0} 3^n * 2^(n^2) * exp(-2*2^n*x) * x^n/n!.
Original entry on oeis.org
1, 4, 100, 10648, 4477456, 7339040224, 47045881000000, 1186980379913527168, 118530511097526559703296, 47035767668340696232372862464, 74367598058372171073462490000000000, 469253945833810205185008441288962454059008
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 100*x^2/2! + 10648*x^3/3! + 4477456*x^4/4! +..
By the series identity, the e.g.f.:
A(x) = exp(-2*x) + 3*2*exp(-2*2*x)*x + 3^2*2^4*exp(-2*2^2*x)*x^2/2! + 3^3*2^9*exp(-2*2^3*x)*x^3/3! +...
expands into:
A(x) = 1 + 4*x + 10^2*x^2/2! + 22^3*x^3/3! + 46^4*x^4/4! + 94^5*x^5/5! +...+ (3*2^n-2)^n*x^n/n! +...
-
Table[(3*2^n-2)^n,{n,0,12}] (* Harvey P. Dale, Jul 16 2023 *)
-
{a(n, q=2, m=3, b=-2)=(m*q^n + b)^n}
-
{a(n, q=2, m=3, b=-2)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
-
{a(n, q=2, m=3, b=-2)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)}
A202991
E.g.f: Sum_{n>=0} 3^(n^2) * exp(-2*3^n*x) * x^n/n!.
Original entry on oeis.org
1, 1, 49, 15625, 38950081, 812990017201, 147640825624179889, 237771659632917369765625, 3425319186561140076700951192321, 443021141828981570872668681812345111521, 515202988063835984513918825523304657054713360049
Offset: 0
E.g.f.: A(x) = 1 + x + 49*x^2/2! + 15625*x^3/3! + 38950081*x^4/4! +...
By the series identity, the g.f.:
A(x) = exp(-2*x) + 3*exp(-2*3*x)*x + 3^4*exp(-2*3^2*x)*x^2/2! + 3^9*exp(-2*3^3*x)*x^3/3! + 3^16*exp(-2*3^4*x)*x^4/4! +...
expands into:
A(x) = 1 + x + 7^2*x^2/2! + 25^3*x^3/3! + 79^4*x^4/4! + 241^5*x^5/5! +...+ (3^n-2)^n*x^n/n! +...
-
{a(n, q=3, m=1, b=-2)=(m*q^n + b)^n}
-
{a(n, q=3, m=1, b=-2)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
-
{a(n, q=3, m=1, b=-2)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)}
Showing 1-4 of 4 results.
Comments