cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A086459 Determinant of the circulant matrix whose rows are formed by successively rotating the vector (1, 2, 4, 8, ..., 2^(n-1)) right.

Original entry on oeis.org

1, -3, 49, -3375, 923521, -992436543, 4195872914689, -70110209207109375, 4649081944211090042881, -1227102111503512992112190463, 1291749870339606615892191271170049, -5429914198235566686555216227881787109375
Offset: 1

Views

Author

T. D. Noe, Jul 21 2003

Keywords

Comments

Note that if the rows are rotated left instead of right, the sign of the terms for which n = 0 or 3 (mod 4) is reversed. The n eigenvalues of these circulant matrices lie on the circle of radius 2(2^n - 1)/3 centered at x = (2^n - 1)/3, y = 0. This sequence can be generalized to bases other than 2 and similar results are true.

Examples

			a(3) = determinant of the matrix ((1,2,4),(4,1,2),(2,4,1)) = 49. [Corrected by _T. D. Noe_, Jan 22 2008]
		

References

  • Richard Bellman, Introduction to Matrix Analysis, Second Edition, SIAM, 1970, pp. 242-3.
  • Philip J. Davis, Circulant Matrices, Second Edition, Chelsea, 1994.

Crossrefs

Cf. A048954 (circulant of binomial coefficients), A052182 (circulant of natural numbers), A066933 (circulant of prime numbers).
Cf. A180602 (unsigned, offset 0). [Paul D. Hanna, Sep 11 2010]

Programs

  • Maple
    restart:with (combinat):a:=n->mul(-stirling2(n,2), j=3..n): seq(a(n), n=2..19); # Zerinvary Lajos, Jan 01 2009
  • Mathematica
    Table[x=2^Range[0, n-1]; m=Table[RotateRight[x, i-1], {i, n}]; Det[m], {n, 12}]

Formula

a(n) = (-2^n + 1)^(n-1).
See formulas in A180602, an unsigned version of this sequence with offset 0. [Paul D. Hanna, Sep 11 2010]

A180606 G.f.: A(x) = exp( Sum_{n>=1} (2^n-1)^(n-1)*x^n/n ).

Original entry on oeis.org

1, 1, 2, 18, 862, 185582, 165592644, 599576207236, 8764375895813558, 516573425446007525398, 122710727732550268600238492, 117431929105754130321446873061820
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 18*x^3 + 862*x^4 + 185582*x^5 +...
log(A(x)) = x + 3*x^2/2 + 7^2*x^3/3 + 15^3*x^4/4 + 31^4*x^5/5 +...
		

Crossrefs

Cf. A180602.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(2^m-1)^(m-1)*x^m/m)+x*O(x^n)),n)}

A202990 E.g.f: Sum_{n>=0} 3^n * 2^(n^2) * exp(-2*2^n*x) * x^n/n!.

Original entry on oeis.org

1, 4, 100, 10648, 4477456, 7339040224, 47045881000000, 1186980379913527168, 118530511097526559703296, 47035767668340696232372862464, 74367598058372171073462490000000000, 469253945833810205185008441288962454059008
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2011

Keywords

Comments

E.g.f. series identity: Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n/n! = Sum_{n>=0} (m*q^n + b)^n * x^n/n! for all q, m, b.
O.g.f. series identity: Sum_{n>=0} m^n * q^(n^2) * x^n/(1-b*q^n*x)^(n+1) = Sum_{n>=0} (m*q^n + b)^n * x^n for all q, m, b.

Examples

			E.g.f.: A(x) = 1 + 4*x + 100*x^2/2! + 10648*x^3/3! + 4477456*x^4/4! +..
By the series identity, the e.g.f.:
A(x) = exp(-2*x) + 3*2*exp(-2*2*x)*x + 3^2*2^4*exp(-2*2^2*x)*x^2/2! + 3^3*2^9*exp(-2*2^3*x)*x^3/3! +...
expands into:
A(x) = 1 + 4*x + 10^2*x^2/2! + 22^3*x^3/3! + 46^4*x^4/4! + 94^5*x^5/5! +...+ (3*2^n-2)^n*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Table[(3*2^n-2)^n,{n,0,12}] (* Harvey P. Dale, Jul 16 2023 *)
  • PARI
    {a(n, q=2, m=3, b=-2)=(m*q^n + b)^n}
    
  • PARI
    {a(n, q=2, m=3, b=-2)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n, q=2, m=3, b=-2)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)}

Formula

a(n) = (3*2^n - 2)^n.
O.g.f.: Sum_{n>=0} 3^n * 2^(n^2) * x^n/(1 + 2*2^n*x)^(n+1).

A202991 E.g.f: Sum_{n>=0} 3^(n^2) * exp(-2*3^n*x) * x^n/n!.

Original entry on oeis.org

1, 1, 49, 15625, 38950081, 812990017201, 147640825624179889, 237771659632917369765625, 3425319186561140076700951192321, 443021141828981570872668681812345111521, 515202988063835984513918825523304657054713360049
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2011

Keywords

Comments

E.g.f. series identity: Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n/n! = Sum_{n>=0} (m*q^n + b)^n * x^n/n! for all q, m, b.
O.g.f. series identity: Sum_{n>=0} m^n * q^(n^2) * x^n/(1-b*q^n*x)^(n+1) = Sum_{n>=0} (m*q^n + b)^n * x^n for all q, m, b.

Examples

			E.g.f.: A(x) = 1 + x + 49*x^2/2! + 15625*x^3/3! + 38950081*x^4/4! +...
By the series identity, the g.f.:
A(x) = exp(-2*x) + 3*exp(-2*3*x)*x + 3^4*exp(-2*3^2*x)*x^2/2! + 3^9*exp(-2*3^3*x)*x^3/3! + 3^16*exp(-2*3^4*x)*x^4/4! +...
expands into:
A(x) = 1 + x + 7^2*x^2/2! + 25^3*x^3/3! + 79^4*x^4/4! + 241^5*x^5/5! +...+ (3^n-2)^n*x^n/n! +...
		

Crossrefs

Programs

  • PARI
    {a(n, q=3, m=1, b=-2)=(m*q^n + b)^n}
    
  • PARI
    {a(n, q=3, m=1, b=-2)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n, q=3, m=1, b=-2)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)}

Formula

a(n) = (3^n - 2)^n.
O.g.f.: Sum_{n>=0} 3^(n^2)*x^n/(1 + 2*3^n*x)^(n+1).
Showing 1-4 of 4 results.