cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A048954 Wendt determinant of n-th circulant matrix C(n).

Original entry on oeis.org

1, -3, 28, -375, 3751, 0, 6835648, -1343091375, 364668913756, -210736858987743, 101832157445630503, 0, 487627751563388801409591, -4875797582053878382039400448, 58623274842128064372315087290368, -1562716604740038367719196682456673375
Offset: 1

Views

Author

Keywords

Comments

det(C(n)) = 0 for n divisible by 6.
The determinant of the circulant matrix is 0 when 6 divides n because the polynomial (x+1)^(6k) - 1 has roots that are roots of unity. See A086569 for a generalization. - T. D. Noe, Jul 21 2003
E. Lehmer claimed and J. S. Frame proved that 2^n - 1 divides a(n) and the quotient abs(a(n))/(2^n - 1) is a perfect square (Ribenboim 1999, p. 128). - Jonathan Sondow, Aug 17 2012
C(n) is the matrix whose first row is [c_1, ..., c_n] where c_i = binomial(n,i-1), and subsequent rows are obtained by cyclically shifting the previous row one place to the right: see examples and PARI code. - M. F. Hasler, Dec 17 2016

Examples

			a(2) = det [ 1 2 ; 2 1 ] = -3.
a(3) = det [ 1 3 3 ; 3 1 3 ; 3 3 1 ] = 28.
a(4) = det [ 1 4 6 4 ; 4 1 4 6 ; 6 4 1 4 ; 4 6 4 1 ] = -375.
		

References

  • P. Ribenboim, "Fermat's Last Theorem for Amateurs", Springer-Verlag, NY, 1999, pp. 126, 136.
  • P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer-Verlag, NY, 1979, pp. 61-63. MR0551363 (81f:10023).

Crossrefs

Cf. A052182 (circulant of natural numbers), A066933 (circulant of prime numbers), A086459 (circulant of powers of 2), A086569, A129205, A215615, A215616.
See A096964 for another definition.

Programs

  • Mathematica
    a[ n_] := Resultant[ x^n - 1, (1+x)^n - 1, x];
  • PARI
    {a(n) = if( n<1, 0, matdet( matrix( n, n, i, j, binomial( n, (j-i)%n ))))}
    
  • PARI
    a(n) = polresultant( x^n - 1, (1+x)^n - 1, x )

Formula

a(2*n) = A129205(n)^2 * (1-4^n).
a(n) = 0 if and only if 6 divides n. If d divides n, then a(d) divides a(n). - Michael Somos, Apr 03 2007
a(n) = (-1)^(n-1) * (2^n - 1) * A215615(n)^2. - Jonathan Sondow, Aug 17 2012
a(2*n) = -3 * A215616(n)^3. - Jonathan Sondow, Aug 18 2012

Extensions

Additional comments from Michael Somos, May 27 2000 and Dec 16 2001

A215616 From Wendt's determinant compute (-A048954(2*n)/3)^(1/3).

Original entry on oeis.org

1, 5, 0, 765, 41261, 0, 1175731456, 804611664045, 0, 4133434158867578125, 36792671310208420147421, 0, 33666995638445382179718361163901, 3930778415673723952392425569428439040, 0, 637350736211692642266912139961455499346709367565
Offset: 1

Views

Author

Jonathan Sondow, Aug 17 2012

Keywords

Comments

It is known that 3 divides A048954(2*n). It is conjectured that the quotient is a perfect cube.
See A048954 for additional comments, references, links, and cross-references.

Crossrefs

Programs

  • Mathematica
    w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[(-w[2 n]/3)^(1/3), {n, 19}]

Formula

a(n) = (-A048954(2*n)/3)^(1/3).
a(n) = 0 if and only if n is divisible by 3.

A129205 From Wendt's determinant compute (A048954(2*n)/(1-4^n))^(1/2).

Original entry on oeis.org

1, 5, 0, 2295, 453871, 0, 545539395584, 4883188189089105, 0, 14214363393075742724609375, 5968603205606800870499639536231, 0, 41302584753289717847206700750464023881130441
Offset: 1

Views

Author

Michael Somos, Apr 03 2007

Keywords

References

  • P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer-Verlag, NY, 1979, page 62. MR0551363 (81f:10023)

Crossrefs

Programs

  • PARI
    {a(n)= if(n<1, 0, n*=2; sqrtint( matdet( matrix( n, n, i, j, binomial( n, (j-i)%n )))/ (1-2^n)))}

Formula

a(n)=0 if and only if n is divisible by 3.
a(n) = A215615(2*n). - Jonathan Sondow, Aug 17 2012

A215656 Solution R of (2*u)^2 = R^2 - p*S^2, where p is the n-th prime of the form 4k+1.

Original entry on oeis.org

147, 20522387091091, 89544370675021535714607142, 8801866915656397716021519532258687362772409962179980790374047406788427
Offset: 1

Views

Author

Jonathan Sondow, Aug 19 2012

Keywords

Comments

p = A002144(n), u = A215615(p), and S = A215657(n).
A215615 is computed from Wendt's circulant determinant A048954.
Brown and Chamberland (2012, p. 600) give explicit formulas for u, R, S.

Examples

			2*A215615(5) = 2*11 = 22 and 22^2  = 147^2 - 5*65^2, so a(1) = 147.
		

Crossrefs

Formula

a(n) = sqrt(4*u^2 + p*S^2) with S = A215657(n), p = A002144(n), u = A215615(p).

A215657 Solution S of (2*u)^2 = R^2 - p*S^2, where p is the n-th prime of the form 4k+1.

Original entry on oeis.org

65, 5691884464123, 2171769991015128035203320, 1634465653492219202324217583600006782459921190308836446038375668451525
Offset: 1

Views

Author

Jonathan Sondow, Aug 20 2012

Keywords

Comments

p = A002144(n), u = A215615(p), and R = A215656(n).
A215615 is computed from Wendt's circulant determinant A048954.
Brown and Chamberland (2012, p. 600) give explicit formulas for u, R, S.

Examples

			2*A215615(5) = 2*11 = 22 and 22^2  = 147^2 - 5*65^2, so a(1) = 65.
		

Crossrefs

Formula

a(n) = sqrt((R^2 - 4*u^2)/p) with R = A215656(n), p = A002144(n), u = A215615(p).
Showing 1-5 of 5 results.