cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A078475 Determinant of rank n matrix of 1..n^2 filled successively back and forth along antidiagonals.

Original entry on oeis.org

1, -2, 15, -594, -5187, 23244, 122475, -279292, -1157143, 1850930, 6642839, -8529278, -27810555, 30741424, 93575187, -92784984, -268191855, 244875462, 679807583, -581798410, -1563707379, 1270245108, 3324627195, -2587197204, -6623079687, 4972012474, 12491212135
Offset: 1

Views

Author

Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 03 2003

Keywords

Comments

The matrix is formed by writing numbers 1 .. n^2 in zig-zag pattern as shown in examples below. Every other antidiagonal reads backwards from A069480.
Whereas each antidiagonal of A069480 begins with one more than a triangular number and ends with the next triangular number, here every other antidiagonal begins with one more than a triangular number and the next antidiagonal begins with a triangular number.
The trace of the matrix is the sequence A006003 (proved). - Stefano Spezia, Aug 07 2018
The matrix is defined by A[i,j] = (2 - i - j)*((i + j - 1) mod 2)+(j^2 + (2*i - 1)*j + i^2 - i)/2 + (j - 1)*(1 - 2*((i + j) mod 2)) if i + j <= n + 1 and A[i,j] = n^2 - ((4*n^2 + (- 4*j - 4*i + 6)*n + j^2 + (2*i - 3)*j + i^2 - 3*i + 2)/2 + (i + j - 2*n)*((2*n - i - j + 1) mod 2)) + 1 - (n - j)*(1 - 2*((i + j) mod 2)) if i + j > n + 1 (proved). - Stefano Spezia, Aug 11 2018

Examples

			n=2, det=-2: {1 2 / 3 4 }
n=3, det=15: {1 2 6 / 3 5 7 / 4 8 9 }
n=4, det=-594: { 1 2 6 7 / 3 5 8 13 / 4 9 12 14 / 10 11 15 16 }
n=5, det=-5187: { 1 2 6 7 15 / 3 5 8 14 16 / 4 9 13 17 22 / 10 12 18 21 23 / 11 19 20 24 25 }
		

Crossrefs

Programs

  • GAP
    A078475 := function(k)
    local i, j, n;
    for n in [1 .. k] do
       A:=NullMat(n,n);
       for i in [1 .. n] do
          for j in [1 .. n] do
             if i+j<=n+1 then
                A[i][j] := (2-i-j)*RemInt(i+j-1,2)+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*RemInt(i+j,2));;
             else
                A[i][j] := n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*RemInt(2*n-i-j+1,2))+1-(n-j)*(1-2*RemInt(i+j,2));
             fi;
          od;
       od;
       Print(n," ",Determinant(A),"\n");
    od;
    end;
    A078475(27); # Stefano Spezia, Aug 12 2018
  • Mathematica
    a[i_, j_, n_] := If[i+j<=n+1, (2-i-j)*Mod[i+j-1,2]+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*Mod[i+j,2]),n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*Mod[2*n-i-j+1,2])+1-(n-j)*(1-2*Mod[i+j,2])]; f[n_] := Det[ Table[a[i, j, n], {i, n}, {j, n}]]; Array[f, 27] (* Stefano Spezia, Aug 11 2018 *)
  • PARI
    A(i,j,n) = if (i + j <= n + 1, (2 - i - j)*((i + j - 1) % 2)+(j^2 + (2*i - 1)*j + i^2 - i)/2 + (j - 1)*(1 - 2*((i + j) % 2)), n^2 - ((4*n^2 + (- 4*j - 4*i + 6)*n + j^2 + (2*i - 3)*j + i^2 - 3*i + 2)/2 + (i + j - 2*n)*((2*n - i - j + 1) % 2)) + 1 - (n - j)*(1 - 2*((i + j) % 2)));
    a(n) = matdet(matrix(n, n, i, j, A(i, j, n))); \\ Michel Marcus, Aug 11 2018
    (MATLAB, FreeMat and Octave)
    for(n=1:27)
       A=zeros(n,n);
       for(i=1:n)
          for(j=1:n)
             if(i+j<=n+1)
                A(i,j)=(2-i-j)*mod(i+j-1,2)+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*mod(i+j,2));
             else
                A(i,j)=n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*mod(2*n-i-j+1,2))+1-(n-j)*(1-2*mod(i+j,2));
             end
          end
       end
       fprintf('%d %0.f\n',n,det(A));
    end # Stefano Spezia, Aug 12 2018
    

Formula

From Vaclav Kotesovec, Jan 08 2019: (Start)
Recurrence: (5*n^16 - 176*n^15 + 2888*n^14 - 29332*n^13 + 206454*n^12 - 1068276*n^11 + 4205934*n^10 - 12861022*n^9 + 30891328*n^8 - 58524140*n^7 + 87229074*n^6 - 101275380*n^5 + 89823673*n^4 - 58824210*n^3 + 26795412*n^2 - 7559784*n + 985608)*a(n) = 8*(n^14 - 20*n^13 + 169*n^12 - 754*n^11 + 1630*n^10 + 564*n^9 - 15184*n^8 + 52244*n^7 - 109015*n^6 + 167071*n^5 - 202816*n^4 + 191592*n^3 - 125145*n^2 + 45333*n - 5832)*a(n-1) - (5*n^16 - 96*n^15 + 848*n^14 - 4580*n^13 + 16966*n^12 - 45892*n^11 + 94310*n^10 - 151266*n^9 + 192520*n^8 - 195196*n^7 + 155666*n^6 - 94052*n^5 + 39329*n^4 - 6798*n^3 - 4572*n^2 + 5400*n - 1944)*a(n-2).
a(n) ~ ((-1)^n - 3) * (cos(Pi*n/2) + sin(Pi*n/2)) * n^8 / 72. (End)
a(n) = -9*a(n-2) - 36*a(n-4) - 84*a(n-6) - 126*a(n-8) - 126*a(n-10) - 84*a(n-12) - 36*a(n-14) - 9*a(n-16) - a(n-18) for n > 18. - Stefano Spezia, Apr 25 2021, simplified by Boštjan Gec, Sep 21 2023

Extensions

Edited and extended by Robert G. Wilson v, May 08 2003

A126224 Determinant of the n X n matrix in which the entries are 1 through n^2, spiraling inward starting with 1 in the (1,1)-entry.

Original entry on oeis.org

1, -5, -48, 660, 11760, -257040, -6652800, 198918720, 6745939200, -255826771200, -10727081164800, 492775291008000, 24610605962342400, -1327677426915840000, -76940526008586240000, 4766815315895592960000, 314406967644177408000000, -21995911456386651463680000
Offset: 1

Views

Author

Emeric Deutsch, Dec 31 2006

Keywords

Examples

			For n = 2, the 2 X 2 (spiral) matrix A is
      [1, 2]
      [4, 3]
Then a(2) = -5 because det(A) = 1*3 - 2*4 = -5.
		

Crossrefs

Cf. A023999 (absolute values). - Alois P. Heinz, Jan 21 2014

Programs

  • Maple
    a:=n->(-1)^(n*(n-1)/2)*2^(2*n-3)*(3*n-1)*product(1/2+k,k=0..n-2): seq(a(n),n=1..20);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, (3*n+1)/4,
          4*(1-3*n)*(2*n-5)*(2*n-3) *a(n-2) /(3*n-7))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    a[n_] := (-1)^(n*(n-1)/2)*2^(2n-3)*(3n-1)*Pochhammer[1/2, n-1]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, May 26 2015 *)

Formula

a(n) = (-1)^[n*(n-1)/2]*2^(2*n-3)*(3*n-1)*Product_{k=0..n-2} (1/2+k) for n>=2.
E.g.f.: (((-16*x^2-1)*sqrt(2*sqrt(16*x^2+1)+2)-8*sqrt(16*x^2+1)*x^2+16*x^2 + sqrt(16*x^2+1)+1)*sqrt(2*sqrt(16*x^2+1)-2)+(8*(sqrt(16*x^2+1)*x^2+2*x^2-(1/8) * sqrt(16*x^2+1)+1/8))*sqrt(2*sqrt(16*x^2+1)+2))/(512*x^3+32*x). - Robert Israel, Apr 20 2017

A079340 Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling outward, ending in a corner.

Original entry on oeis.org

1, 5, 72, 1380, 31920, 861840, 26611200, 925404480, 35805369600, 1526139014400, 71066912716800, 3590219977344000, 195589552648089600, 11430978821982720000, 713448513897799680000, 47363888351558338560000
Offset: 1

Views

Author

Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 03 2003

Keywords

Comments

If n == 0 or 1 (mod 4), the sign of the determinant will be independent of the orientation of the spiral. For n == 2 or 3 (mod 4), the sign will be reversed when the orientation is rotated by 1/4 or flipped on the horizontal or vertical axis. - Franklin T. Adams-Watters, Dec 31 2013
This distribution of the integers is sometimes known as Ulam's spiral, although that is sometimes reserved for when the primes are marked out in some way. - Franklin T. Adams-Watters, Dec 31 2013

Examples

			n=2, det=-5: {1 2 / 4 3 }.
n=3, det=72: {7 8 9 / 6 1 2 / 5 4 3 }.
n=4, det=-1380: { 7 8 9 10 / 6 1 2 11 /5 4 3 12 / 16 15 14 13 }.
n=5, det=31920: { 21 22 23 24 25 / 20 7 8 9 10 / 19 6 1 2 11 /18 5 4 3 12 / 17 16 15 14 13 }
		

Crossrefs

Programs

  • Mathematica
    M[0, 0] = 1;
    M[i_, j_] := If[i <= j,
      If[i + j >= 0, If[i != j, M[i + 1, j] + 1, M[i, j - 1] + 1],
       M[i, j + 1] + 1],
      If[i + j > 1, M[i, j - 1] + 1, M[i - 1, j] + 1]
      ]
    M[n_] := If[EvenQ[n],
      Table[M[i, j], {j, n/2, -n/2 + 1, -1}, {i, -n/2 + 1, n/2}],
      Table[M[i, j], {j, (n - 1)/2, -(n - 1)/2, -1}, {i, -(n - 1)/2, (n - 1)/2}]]
    a[n_]:=Det[M[n]] (* Christian Krattenthaler, Apr 19 2017 *)
  • Maxima
    A079340(n):=if n=1 then 1 else (2*n^2-3*n+3)*(2*n-2)!/(2*(n-1)!)$
    makelist(A079340(n),n,1,30); /* Martin Ettl, Nov 05 2012 */

Formula

a(n) = (2*n^2-3*n+3) (2n-2)!/(2 (n-1)!) = A096376(n-1)*A000407(n-2), n>1. - Conjectured by Dean Hickerson, Jan 30 2003. Proved in the article by Bhatnagar and Krattenthaler.
D-finite with recurrence (2*n^2-7*n+8)*a(n) -2*(2*n-3)*(2*n^2-3*n+3)*a(n-1)=0. - R. J. Mathar, May 03 2019

Extensions

Extended by Robert G. Wilson v, Jan 25 2003

A226167 Array read by antidiagonals: a(i,j) is the number of ways of labeling a tableau of shape (i,1^j) with the integers 1, 2, ... i+j-2 (each label being used once) such that the first row is decreasing, and the first column has m-1 labels.

Original entry on oeis.org

1, 3, 1, 12, 5, 1, 60, 27, 7, 1, 360, 168, 48, 9, 1, 2520, 1200, 360, 75, 11, 1, 20160, 9720, 3000, 660, 108, 13, 1, 181440, 88200, 27720, 6300, 1092, 147, 15, 1, 1814400, 887040, 282240, 65520, 11760, 1680, 192, 17, 1, 19958400, 9797760, 3144960, 740880, 136080, 20160, 2448, 243, 19, 1
Offset: 1

Views

Author

John M. Campbell, May 29 2013

Keywords

Comments

For an arbitrary composition c, let F_c^p denote the linear transformation of NSym that is adjoint to multiplication by the fundamental quasi-symmetric function indexed by c. Then a(i,j) equals the coefficient of H_(1,1) in (F_(1)^p)^(i+j-2)(H_(i,1^j)) (see below SAGE program, and Corollary 2.7 in the below link).
Let M(n) = [a(i,j)]_{n x n}. Then det(M(n))=A000178(n)=the n-th superfactorial.
Let p_n(x) denote the polynomial such that a(x,n)=p_n(x). Then the coefficient of x in p_n(x) is |A009575(n)|. For example, p_4(x)=4x^3+18x^2+26x+12, and the coefficient of x in p_4(x) is |A009575(4)|=26.
First row is A001710. Second row is A138772. Fourth row is A136659.

Examples

			There are a(3,2) = 7 ways of labeling the tableau of shape (3,1,1) with 1, 2 and 3 (with each label being used once) such that the first row is decreasing and the first column has 1 label:
1    2    3    X    X    X    X
X    X    X    1    2    3    X
X32  X31  X21  X32  X31  X21  321
The matrix [a(i,j)]_(6 x 6) is given below:
[1  3  12   60   360   2520]
[1  5  27  168  1200   9720]
[1  7  48  360  3000  27720]
[1  9  75  660  6300  65520]
[1 11 108 1092 11760 136080]
[1 13 147 1680 20160 257040]
		

Crossrefs

Main diagonal gives: A023999. - Alois P. Heinz, Jan 21 2014

Programs

  • Maple
    a:= (i, j)-> (i+j-2)!/i!*(2*i+j-1)*j/2:
    seq(seq(a(i, 1+d-i), i=1..d), d=1..12);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    a[n_,k_]:=(n+k-2)!/n!*(2*n+k-1)*k/2 ;
    Print[Array[a[#1,#2]&,{50,50}]//MatrixForm]
    (* A program which gives a list of tableaux *)
    a[i_, j_] :=  Module[{f, list1, el, emptylist, n},
      f[q_] := StringReplace[StringReplace[StringReplace[    StringReplace[ToString[q], ToString[i + j - 1] -> "X"], ", " -> ""], "{" -> ""], "}" -> ""]; list1 = Permutations[Join[Table[q, {q, 1, i + j - 2}], {i + j - 1, i + j - 1}]]; el[q_] := First[Take[list1, {q, q}]]; emptylist = {}; n = 1; While[n < 1 + Length[list1], If[Take[el[n], {j + 1, i + j}] == Sort[Take[el[n], {j + 1, i + j}], Greater] && Count[Take[el[n], {1, j + 1}], i + j - 1] == 2, emptylist = Append[emptylist, f[el[n]]], Null]; n++]; Print[emptylist]]
  • Sage
    NSym = NonCommutativeSymmetricFunctions(QQ) ;
    QSym = QuasiSymmetricFunctions(QQ) ;
    F = QSym.Fundamental() ;
    H = NSym.complete() ;
    def a(n, m):
         expr = H([n]+[1 for q in range(m)]) ;
         w=1 ;
         while w
    				

Formula

a(i,j) = (i+j-2)!/i!*(2*i+j-1)*j/2.

A376161 Number of support Tau-tilting modules for some algebras.

Original entry on oeis.org

3, 5, 12, 33, 98, 306, 990, 3289, 11154, 38454, 134368, 474810, 1693812, 6091780, 22064130, 80410185, 294647250, 1084922190, 4012165080, 14895504030, 55496654460, 207431394300, 777601790940, 2922867908298, 11013796950228, 41596652545756, 157434454904160, 597029454416724, 2268232385053096
Offset: 0

Views

Author

F. Chapoton, Sep 13 2024

Keywords

Comments

See Prop. A.6 in Wang's reference for the table counting Tau-tilting modules for the linear quiver modulo the relation alpha*beta = 0.

Crossrefs

Programs

  • Maple
    a := n -> -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2):
    seq(a(n), n = 0..28)  # Peter Luschny, Sep 13 2024
  • Mathematica
    A376161[n_] := CatalanNumber[n]*(9*n + 6)/(n + 2);
    Array[A376161, 30, 0] (* Paolo Xausa, Sep 14 2024 *)
  • Sage
    def a(n):
        return 3*(3*n+2)*binomial(2*n+4,n+2)/4/(2*n+1)/(2*n+3)

Formula

a(n) = 3*(3*n+2)*binomial(2*n+4,n+2)/(4*(2*n+1)*(2*n+3)).
a(n) = A329533(n)/(n + 1).
From Peter Luschny, Sep 13 2024: (Start)
a(n) = (3*n + 2) * [x^n] ((1 - 4*x)^(3/2) + 12*x - 2)/(4*x^2).
a(n) = A016789(n)*(3/2)*(2*n)! * [x^(2*n)] hypergeom([], [3], x^2).
a(n) = CatalanNumber(n)*(9*n + 6)/(n + 2).
a(n) = -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2).
a(n) = 2^n*(9*n + 6)*(2*n - 1)!! / (n + 2)!.
a(n) = A007054(n) * (3*n + 2) / 2.
a(n) = 6*A023999(n + 1)/(n + 2)!. (End)
Showing 1-5 of 5 results.