cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A078475 Determinant of rank n matrix of 1..n^2 filled successively back and forth along antidiagonals.

Original entry on oeis.org

1, -2, 15, -594, -5187, 23244, 122475, -279292, -1157143, 1850930, 6642839, -8529278, -27810555, 30741424, 93575187, -92784984, -268191855, 244875462, 679807583, -581798410, -1563707379, 1270245108, 3324627195, -2587197204, -6623079687, 4972012474, 12491212135
Offset: 1

Views

Author

Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 03 2003

Keywords

Comments

The matrix is formed by writing numbers 1 .. n^2 in zig-zag pattern as shown in examples below. Every other antidiagonal reads backwards from A069480.
Whereas each antidiagonal of A069480 begins with one more than a triangular number and ends with the next triangular number, here every other antidiagonal begins with one more than a triangular number and the next antidiagonal begins with a triangular number.
The trace of the matrix is the sequence A006003 (proved). - Stefano Spezia, Aug 07 2018
The matrix is defined by A[i,j] = (2 - i - j)*((i + j - 1) mod 2)+(j^2 + (2*i - 1)*j + i^2 - i)/2 + (j - 1)*(1 - 2*((i + j) mod 2)) if i + j <= n + 1 and A[i,j] = n^2 - ((4*n^2 + (- 4*j - 4*i + 6)*n + j^2 + (2*i - 3)*j + i^2 - 3*i + 2)/2 + (i + j - 2*n)*((2*n - i - j + 1) mod 2)) + 1 - (n - j)*(1 - 2*((i + j) mod 2)) if i + j > n + 1 (proved). - Stefano Spezia, Aug 11 2018

Examples

			n=2, det=-2: {1 2 / 3 4 }
n=3, det=15: {1 2 6 / 3 5 7 / 4 8 9 }
n=4, det=-594: { 1 2 6 7 / 3 5 8 13 / 4 9 12 14 / 10 11 15 16 }
n=5, det=-5187: { 1 2 6 7 15 / 3 5 8 14 16 / 4 9 13 17 22 / 10 12 18 21 23 / 11 19 20 24 25 }
		

Crossrefs

Programs

  • GAP
    A078475 := function(k)
    local i, j, n;
    for n in [1 .. k] do
       A:=NullMat(n,n);
       for i in [1 .. n] do
          for j in [1 .. n] do
             if i+j<=n+1 then
                A[i][j] := (2-i-j)*RemInt(i+j-1,2)+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*RemInt(i+j,2));;
             else
                A[i][j] := n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*RemInt(2*n-i-j+1,2))+1-(n-j)*(1-2*RemInt(i+j,2));
             fi;
          od;
       od;
       Print(n," ",Determinant(A),"\n");
    od;
    end;
    A078475(27); # Stefano Spezia, Aug 12 2018
  • Mathematica
    a[i_, j_, n_] := If[i+j<=n+1, (2-i-j)*Mod[i+j-1,2]+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*Mod[i+j,2]),n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*Mod[2*n-i-j+1,2])+1-(n-j)*(1-2*Mod[i+j,2])]; f[n_] := Det[ Table[a[i, j, n], {i, n}, {j, n}]]; Array[f, 27] (* Stefano Spezia, Aug 11 2018 *)
  • PARI
    A(i,j,n) = if (i + j <= n + 1, (2 - i - j)*((i + j - 1) % 2)+(j^2 + (2*i - 1)*j + i^2 - i)/2 + (j - 1)*(1 - 2*((i + j) % 2)), n^2 - ((4*n^2 + (- 4*j - 4*i + 6)*n + j^2 + (2*i - 3)*j + i^2 - 3*i + 2)/2 + (i + j - 2*n)*((2*n - i - j + 1) % 2)) + 1 - (n - j)*(1 - 2*((i + j) % 2)));
    a(n) = matdet(matrix(n, n, i, j, A(i, j, n))); \\ Michel Marcus, Aug 11 2018
    (MATLAB, FreeMat and Octave)
    for(n=1:27)
       A=zeros(n,n);
       for(i=1:n)
          for(j=1:n)
             if(i+j<=n+1)
                A(i,j)=(2-i-j)*mod(i+j-1,2)+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*mod(i+j,2));
             else
                A(i,j)=n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*mod(2*n-i-j+1,2))+1-(n-j)*(1-2*mod(i+j,2));
             end
          end
       end
       fprintf('%d %0.f\n',n,det(A));
    end # Stefano Spezia, Aug 12 2018
    

Formula

From Vaclav Kotesovec, Jan 08 2019: (Start)
Recurrence: (5*n^16 - 176*n^15 + 2888*n^14 - 29332*n^13 + 206454*n^12 - 1068276*n^11 + 4205934*n^10 - 12861022*n^9 + 30891328*n^8 - 58524140*n^7 + 87229074*n^6 - 101275380*n^5 + 89823673*n^4 - 58824210*n^3 + 26795412*n^2 - 7559784*n + 985608)*a(n) = 8*(n^14 - 20*n^13 + 169*n^12 - 754*n^11 + 1630*n^10 + 564*n^9 - 15184*n^8 + 52244*n^7 - 109015*n^6 + 167071*n^5 - 202816*n^4 + 191592*n^3 - 125145*n^2 + 45333*n - 5832)*a(n-1) - (5*n^16 - 96*n^15 + 848*n^14 - 4580*n^13 + 16966*n^12 - 45892*n^11 + 94310*n^10 - 151266*n^9 + 192520*n^8 - 195196*n^7 + 155666*n^6 - 94052*n^5 + 39329*n^4 - 6798*n^3 - 4572*n^2 + 5400*n - 1944)*a(n-2).
a(n) ~ ((-1)^n - 3) * (cos(Pi*n/2) + sin(Pi*n/2)) * n^8 / 72. (End)
a(n) = -9*a(n-2) - 36*a(n-4) - 84*a(n-6) - 126*a(n-8) - 126*a(n-10) - 84*a(n-12) - 36*a(n-14) - 9*a(n-16) - a(n-18) for n > 18. - Stefano Spezia, Apr 25 2021, simplified by BoĊĦtjan Gec, Sep 21 2023

Extensions

Edited and extended by Robert G. Wilson v, May 08 2003

A023999 Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling inward, starting in a corner.

Original entry on oeis.org

1, 5, 48, 660, 11760, 257040, 6652800, 198918720, 6745939200, 255826771200, 10727081164800, 492775291008000, 24610605962342400, 1327677426915840000, 76940526008586240000, 4766815315895592960000, 314406967644177408000000, 21995911456386651463680000
Offset: 1

Views

Author

Charles Diminnie (charles.diminnie(AT)rampo.angelo.edu)

Keywords

Comments

Starting in the NW or SE corner, the signs are cyclic (+,-,-,+), starting in the NE or SW corner, the signs are always positive.

Examples

			n=4: det of
.1..2..3.4
12.13.14.5
11.16.15.6
10..9..8.7
		

Crossrefs

Main diagonal of A226167, A126224 (signed version). - Alois P. Heinz, Jan 21 2014

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, (3*n+1)/4,
          4*(3*n-1)*(2*n-5)*(2*n-3) *a(n-2) /(3*n-7))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    M[0, 0] = 1;
    M[i_, j_] := If[i <= j,
      If[i + j >= 0, If[i != j, M[i + 1, j] + 1, M[i, j - 1] + 1],
       M[i, j + 1] + 1],
      If[i + j > 1, M[i, j - 1] + 1, M[i - 1, j] + 1]
      ]
    M[n_] := n^2 + 1 - If[EvenQ[n],
      Table[M[i, j], {j, n/2, -n/2 + 1, -1}, {i, -n/2 + 1, n/2}],
      Table[M[i, j], {j, (n - 1)/2, -(n - 1)/2, -1}, {i, -(n - 1)/2, (n - 1)/2}]]
    a[n_]:=Det[M[n]] (* Christian Krattenthaler, Apr 19 2017 *)
  • Maxima
    A023999(n):=if n=1 then 1 else 2*((-1)^((n+4)*(n-1))/2 *(3*n-1) * (2*n-3)!/(n-2)!)$
    makelist(A023999(n),n,1,30); /* Martin Ettl, Nov 05 2012 */

Formula

a(n) = (3n-1) * (2n-3)!/(n-2)! for n >= 2. [corrected by Robert Israel, Apr 20 2017]
E.g.f.: ((-2*x-1)*sqrt(1-4*x)+1-4*x)/(16*x-4). - Robert Israel, Apr 20 2017

Extensions

Edited and extended by Robert G. Wilson v, May 07 2003
Showing 1-2 of 2 results.