A052182
Determinant of n X n matrix whose rows are cyclic permutations of 1..n.
Original entry on oeis.org
1, -3, 18, -160, 1875, -27216, 470596, -9437184, 215233605, -5500000000, 155624547606, -4829554409472, 163086595857367, -5952860799406080, 233543408203125000, -9799832789158199296, 437950726881001816329, -20766159817517617053696, 1041273502979112415328410
Offset: 1
Henry M. Gunn High School Mathematical Circle (Joshua Zucker), Jan 26 2000
a(3) = 18 because this is the determinant of [(1,2,3), (3,1,2), (2,3,1) ].
-
1,seq(LinearAlgebra:-Determinant(Matrix(n,shape=Circulant[$1..n])),n=2..30); # Robert Israel, Aug 31 2014
-
f[n_] := Det[ Table[ RotateLeft[ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 19] (* or *)
f[n_] := (-1)^(n - 1)*n^(n - 2)*(n^2 + n)/2; Array[f, 19]
(* Robert G. Wilson v, Aug 31 2014 *)
Table[Det[Table[RotateRight[Range[k],n],{n,0,k-1}]],{k,30}] (* Harvey P. Dale, Jun 20 2024 *)
-
(1+n)^(n-1)*binomial(n+2,n)*(-1)^(n) $ n=0..16 // Zerinvary Lajos, Apr 01 2007
-
a(n) = (n+1)*(-n)^(n-1)/2; \\ Altug Alkan, Dec 17 2017
A081131
a(n) = n^(n-2) * binomial(n,2).
Original entry on oeis.org
0, 0, 1, 9, 96, 1250, 19440, 352947, 7340032, 172186884, 4500000000, 129687123005, 4086546038784, 139788510734886, 5159146026151936, 204350482177734375, 8646911284551352320, 389289535005334947848, 18580248257778920521728, 937146152681201173795569
Offset: 0
-
[n lt 2 select 0 else n^(n-2)*Binomial(n,2): n in [0..20]]; // G. C. Greubel, May 18 2021
-
Join[{0},Table[n^(n-2) Binomial[n, 2], {n, 1, 20}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
-
[0 if (n<2) else n^(n-2)*binomial(n,2) for n in (0..20)] # G. C. Greubel, May 18 2021
A116956
Number of functions f:{1,2,...,n}->{1,2,...,n} with odd cycles only.
Original entry on oeis.org
1, 1, 3, 18, 157, 1800, 25551, 432376, 8494809, 190029888, 4768313275, 132626098176, 4049755214517, 134677876657792, 4845193429684167, 187490897290080000, 7765153170076158001, 342721890859339812864, 16058392049508837366771, 796093438190851834236928
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
(j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 20 2016
-
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[
Series[((1 + t)/(1 - t))^(1/2), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 07 2011 *)
A066274
Number of endofunctions of [n] such that 1 is not a fixed point.
Original entry on oeis.org
0, 2, 18, 192, 2500, 38880, 705894, 14680064, 344373768, 9000000000, 259374246010, 8173092077568, 279577021469772, 10318292052303872, 408700964355468750, 17293822569102704640, 778579070010669895696, 37160496515557841043456, 1874292305362402347591138
Offset: 1
a(2)=2: [1->2,2->1], [1->2,2->2].
A085719
Permanent of n X n matrix whose rows are cyclic permutations of 1..n.
Original entry on oeis.org
1, 1, 5, 54, 1060, 33225, 1517028, 95036284, 7828309568, 820553006835, 106652605456000, 16835058193182834, 3172396072749375744, 703470523269606264445, 181335014313248383578368, 53768377727402203980675000, 18172294259291992881395286016
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 19 2003
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](
Matrix(n, (i, j)-> 1+irem(j+i, n)))):
seq(a(n), n=0..17); # Alois P. Heinz, Apr 28 2020
-
permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
for(n=1,22,a=matrix(n,n,i,j,1+(j-i)%n);print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
-
def A085719(n) : return matrix([[(i-j)%n+1 for j in range(n)] for i in range(n)]).permanent() # Eric M. Schmidt, May 04 2013
A303260
Determinant of n X n matrix A[i,j] = (j - i - 1 mod n) + [i=j], i.e., the circulant having (n, 0, 1, ..., n-2) as first row.
Original entry on oeis.org
1, 1, 4, 28, 273, 3421, 52288, 941578, 19505545, 456790123, 11931215316, 343871642632, 10840081272265, 371026432467913, 13702802011918048, 543154131059225686, 23000016472483168305, 1036227971225610466711, 49492629462587441963140, 2497992686980609418282548, 132849300060919364474261281
Offset: 0
a(5) = 3421 is the determinant of the matrix
( 5 0 1 2 3 )
( 3 5 0 1 2 )
( 2 3 5 0 1 ) and 3421 = 23501[6], i.e., written in base 6.
( 1 2 3 5 0 )
( 0 1 2 3 5 ).
Cf.
A081131(n+1) = determinant of the circulant matrix C(n) defined in formula,
A070896 (signed variant).
-
a(n)=matdet(matrix(n,n,i,j,(j-i-1)%n+(i==j)))
-
from sympy import Matrix
def A303260(n): return Matrix(n,n, lambda i,j:(j-i-1) % n + (i==j)).det() # Chai Wah Wu, Oct 18 2021
A086759
Permanent of the Cayley addition table of Z_{n}. a(n) is the permanent of the n X n matrix M_(i,j) = ((i+j) mod n) where i and j range from 0 to n-1.
Original entry on oeis.org
0, 1, 9, 164, 5050, 227508, 14064519, 1146668608, 119249333028, 15400125776000, 2417814003691405, 453536611741073664, 100178077459552487070, 25735749696251388478720, 7608415981499790110521875, 2564724413131659780025106432, 977834710569917222742633274504
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 01 2003
a(9) is the permanent of the matrix
0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 0 1
3 4 5 6 7 8 0 1 2
4 5 6 7 8 0 1 2 3
5 6 7 8 0 1 2 3 4
6 7 8 0 1 2 3 4 5
7 8 0 1 2 3 4 5 6
8 0 1 2 3 4 5 6 7
-
Array[With[{s = Range[0, #]}, Permanent@ Array[RotateLeft[s, #] &, Last@ s + 1, 0]] &, 16, 0] (* Michael De Vlieger, Sep 03 2019 *)
-
permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p) for(n=1,21,a=matrix(n,n,i,j,((i+j-2)%n));print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007
-
a(n) = matpermanent(matrix(n, n, i, j, (i+j-2) % n)) \\ Stefano Spezia, Oct 25 2020
a(9) from Neven Juric (neven.juric(AT)apis-it.hr), Jul 11 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007
A338424
Permanent of n X n matrix whose rows are cyclic permutations of 2..prime(n).
Original entry on oeis.org
1, 2, 13, 250, 8961, 821848, 90031117, 16929468082, 3699112438993, 1172372082948016, 592930150554224105, 314980461163972949868, 237098727748233796765441, 209617206588771062279193558, 193794661072190257001413994605, 210096924743130844484817519143524, 287845708921326527700201694718406369
Offset: 0
a(3) = 250 because the permanent of [(2,3,5), (3,5,2), (5,2,3)] is 250.
-
a(n) = matpermanent(matrix(n, n, i, j, prime((i+j-2) % n + 1)))
A348183
a(n) is the determinant of the n X n matrix M = (m_{i,j}), i,j from 0 to n-1: m{i,j} = (i+j)^2 mod n.
Original entry on oeis.org
1, 0, -1, -2, 0, 250, 5616, -33614, 0, 204073344, -900000000, -9431790764, 0, 10752962364222, -1870899108384768, -36328974609375000, 0, 22899384412078526344, -111400529859275793629184, -43843094862278417487512, 0, 2870507605405055660542502550, 67015802375208384199755038720
Offset: 0
a(2) = |0^2 mod 2, 1^2 mod 2| = -1
|1^2 mod 2, 2^2 mod 2|
--
|0^2 mod 3, 1^2 mod 3, 2^2 mod 3|
a(3) = |1^2 mod 3, 2^2 mod 3, 3^2 mod 3| = -2
|2^2 mod 3, 3^2 mod 3, 4^2 mod 3|
-
a[n_]:=Table[Mod[(i+j)^2,n],{i,0,n-1},{j,0,n-1}]; Join[{1},Table[Det[a[n]], {n, 22}]] (* Stefano Spezia, Oct 06 2021 *)
-
a(n) = matdet(matrix(n, n, i, j, i--; j--; (i+j)^2 % n)); \\ Michel Marcus, Oct 06 2021
-
from sympy import Matrix
def A348183(n): return Matrix(n,n,[pow(i+j,2,n) for i in range(n) for j in range(n)]).det() # Chai Wah Wu, Nov 24 2021
a(14)-a(17) corrected by and more terms from
Stefano Spezia, Oct 06 2021.
Showing 1-9 of 9 results.
Comments