A273994
Number of endofunctions on [n] whose cycle lengths are Fibonacci numbers.
Original entry on oeis.org
1, 1, 4, 27, 250, 2975, 43296, 744913, 14797036, 333393345, 8403026320, 234300271811, 7161316358616, 238108166195263, 8556626831402560, 330494399041444425, 13654219915946513296, 600870384794864432897, 28060233470995898505024, 1386000542545570348128235
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:= $0..2;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= g, f+g
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {g, f + g}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A273996
Number of endofunctions on [n] whose cycle lengths are factorials.
Original entry on oeis.org
1, 1, 4, 25, 218, 2451, 33952, 560407, 10750140, 235118665, 5775676496, 157448312649, 4716609543736, 154007821275595, 5443783515005760, 207093963680817511, 8436365861409555728, 366403740283162634193, 16900793597898691865920, 825115046704241167668025
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:= $0..2;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= f*g, g+1
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {f*g, g + 1}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A273998
Number of endofunctions on [n] whose cycle lengths are primes.
Original entry on oeis.org
1, 0, 1, 8, 75, 904, 13255, 229536, 4587961, 103971680, 2634212961, 73787255200, 2264440519891, 75563445303072, 2724356214102055, 105546202276277504, 4373078169296869425, 192970687573630633216, 9035613818754820178689, 447469496697658409400960
Offset: 0
-
b:= proc(n) option remember; local r, p;
if n=0 then 1 else r, p:=0, 2;
while p<=n do r:= r+(p-1)!*b(n-p)*
binomial(n-1, p-1); p:= nextprime(p)
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, p}, If[n == 0, 1, {r, p} = {0, 2}; While[p <= n, r = r + (p - 1)!*b[n - p]*Binomial[n-1, p-1]; p = NextPrime[p]]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A305824
Number of endofunctions on [n] whose cycle lengths are triangular numbers.
Original entry on oeis.org
1, 1, 3, 18, 157, 1776, 24807, 413344, 8004537, 176630400, 4374300331, 120136735104, 3623854678677, 119102912981248, 4236492477409935, 162152320065532416, 6645233337842716273, 290321208589666369536, 13469914225467040015827, 661442143465113960448000
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:=$0..2;
while f<=n do r, f, g:= r+(f-1)!*
b(n-f)*binomial(n-1, f-1), f+g, g+1
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, {r, f, g} = {r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1], f + g, g + 1}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 15 2018, after Alois P. Heinz *)
A273997
Number of endofunctions on [n] whose cycle lengths are squares.
Original entry on oeis.org
1, 1, 3, 16, 131, 1446, 19957, 329344, 6315129, 137942380, 3382214291, 92014156224, 2751300514987, 89701699067176, 3167429783609925, 120428877629249536, 4905431165356442993, 213120603686615692176, 9837426739843075654819, 480775495859934668704000
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:=0, 1, 3;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= f+g, g+2
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 3}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {f + g, g + 2}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A212599
Number of functions on n labeled points to themselves (endofunctions) such that the number of cycles of f that have each even size is even.
Original entry on oeis.org
1, 1, 3, 18, 160, 1875, 27126, 466186, 9275064, 209654325, 5307031000, 148720701426, 4570816040352, 152874605142727, 5527634477245440, 214862754390554250, 8934811701563214976, 395788795274021394729, 18606559519007667893376, 925222631836457779380370, 48518852386696450625510400
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(j, igcd(i, 2))<>0, 0, (i-1)!^j*
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> add(b(j, j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Sep 08 2014
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];p=Product[Cosh[t^(2i)/(2i)],{i,1,nn}];Range[0,nn]! CoefficientList[Series[((1+t)/(1-t))^(1/2) p,{x,0,nn}],x]
A202013
The number of functions f:{1,2,...,n}->{1,2,...,n} that have an odd number of odd length cycles and no even length cycles.
Original entry on oeis.org
0, 1, 2, 12, 100, 1120, 15606, 260344, 5056136, 112026240, 2788230250, 77009739136, 2337124786668, 77302709780608, 2767629599791070, 106631592312384000, 4398877912885363216, 193450993635808976896, 9034380526387410161874, 446519425974262943518720, 23284829853408862172112500
Offset: 0
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
`if`(j::odd, (j-1)!*b(n-j, 1-t)*
binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j, 0)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 20 2016
-
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Sinh[Log[((1 + t)/(1 - t))^(1/2)]], {x, 0, 20}], x]
CoefficientList[Series[(((1-LambertW[-x])/(1+LambertW[-x]))^(1/2))/2 - 1/(2*((1-LambertW[-x])/(1+LambertW[-x]))^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 24 2013 *)
A275385
Number of labeled functional digraphs on n nodes with only odd sized cycles and such that every vertex is at a distance of at most 1 from a cycle.
Original entry on oeis.org
1, 1, 3, 12, 73, 580, 5601, 63994, 844929, 12647016, 211616065, 3914510446, 79320037281, 1747219469164, 41569414869633, 1062343684252530, 29023112392093441, 844101839207139280, 26038508978625589377, 849150487829425227094, 29189561873274715264545
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
(j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j)*j^(n-j)*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2016
-
nn = 20; Range[0, nn]! CoefficientList[Series[Sqrt[(1 + z*Exp[z])/(1 - z*Exp[z])], {z, 0, nn}], z]
-
default(seriesprecision, 30);
S=sqrt((1 + x*exp(x))/(1 - x*exp(x)));
v=Vec(S); for(n=2,#v-1,v[n+1]*=n!); v \\ Charles R Greathouse IV, Jul 29 2016
Showing 1-8 of 8 results.
Comments