A218002
E.g.f.: exp( Sum_{n>=1} x^prime(n) / prime(n) ).
Original entry on oeis.org
1, 0, 1, 2, 3, 44, 55, 1434, 3913, 39752, 392481, 5109290, 34683451, 914698212, 5777487703, 91494090674, 1504751645265, 31764834185744, 379862450767873, 12634073744624082, 132945783064464691, 2753044719709341980, 64135578414076991031, 1822831113987975441482
Offset: 0
E.g.f.: A(x) = 1 + x^2/2! + 2*x^3/3! + 3*x^4/4! + 44*x^5/5! + 55*x^6/6! + 1434*x^7/7! + ...
where
log(A(x)) = x^2/2 + x^3/3 + x^5/5 + x^7/7 + x^11/11 + x^13/13 + x^17/17 + x^19/19 + x^23/23 + x^29/29 + ... + x^prime(n)/prime(n) + ...
a(5) = 44 because there are 5!/5 = 24 permutations that are 5-cycles and there are 5!/(2*3) = 20 permutations that are the disjoint product of a 2-cycle and a 3-cycle. - _Geoffrey Critzer_, Nov 08 2015
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(isprime(j),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Apply[And, PrimeQ[#]] &]]], {n, 0,23}] (* Geoffrey Critzer, Nov 08 2015 *)
-
{a(n)=n!*polcoeff(exp(sum(k=1,n,x^prime(k)/prime(k))+x*O(x^n)),n)}
for(n=0,31,print1(a(n),", "))
A273994
Number of endofunctions on [n] whose cycle lengths are Fibonacci numbers.
Original entry on oeis.org
1, 1, 4, 27, 250, 2975, 43296, 744913, 14797036, 333393345, 8403026320, 234300271811, 7161316358616, 238108166195263, 8556626831402560, 330494399041444425, 13654219915946513296, 600870384794864432897, 28060233470995898505024, 1386000542545570348128235
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:= $0..2;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= g, f+g
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {g, f + g}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A273996
Number of endofunctions on [n] whose cycle lengths are factorials.
Original entry on oeis.org
1, 1, 4, 25, 218, 2451, 33952, 560407, 10750140, 235118665, 5775676496, 157448312649, 4716609543736, 154007821275595, 5443783515005760, 207093963680817511, 8436365861409555728, 366403740283162634193, 16900793597898691865920, 825115046704241167668025
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:= $0..2;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= f*g, g+1
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {f*g, g + 1}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A305824
Number of endofunctions on [n] whose cycle lengths are triangular numbers.
Original entry on oeis.org
1, 1, 3, 18, 157, 1776, 24807, 413344, 8004537, 176630400, 4374300331, 120136735104, 3623854678677, 119102912981248, 4236492477409935, 162152320065532416, 6645233337842716273, 290321208589666369536, 13469914225467040015827, 661442143465113960448000
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:=$0..2;
while f<=n do r, f, g:= r+(f-1)!*
b(n-f)*binomial(n-1, f-1), f+g, g+1
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, {r, f, g} = {r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1], f + g, g + 1}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 15 2018, after Alois P. Heinz *)
A273997
Number of endofunctions on [n] whose cycle lengths are squares.
Original entry on oeis.org
1, 1, 3, 16, 131, 1446, 19957, 329344, 6315129, 137942380, 3382214291, 92014156224, 2751300514987, 89701699067176, 3167429783609925, 120428877629249536, 4905431165356442993, 213120603686615692176, 9837426739843075654819, 480775495859934668704000
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:=0, 1, 3;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= f+g, g+2
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 3}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {f + g, g + 2}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
Showing 1-5 of 5 results.
Comments