A273001
Number of permutations of [n] whose cycle lengths are Fibonacci numbers.
Original entry on oeis.org
1, 1, 2, 6, 18, 90, 420, 2220, 19020, 130860, 1096920, 9862920, 83843640, 1411202520, 16144792560, 203091829200, 2989264122000, 37012939750800, 597962683188000, 8681244913692000, 126467701221607200, 5006833609034743200, 95602098255580238400
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(issqr(5*j^2+4) or issqr(5*j^2-4),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25);
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[5*j^2+4] || IntegerQ @ Sqrt[5*j^2-4], a[n-j]*(j-1)!*Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[ a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 30 2017, translated from Maple *)
A317131
Number of permutations of [n] whose lengths of increasing runs are prime numbers.
Original entry on oeis.org
1, 0, 1, 1, 5, 19, 80, 520, 2898, 22486, 171460, 1509534, 14446457, 147241144, 1650934446, 19494460567, 248182635904, 3340565727176, 47659710452780, 718389090777485, 11381176852445592, 189580213656445309, 3305258537062221020, 60273557241570401742
Offset: 0
a(2) = 1: 12.
a(3) = 1: 123.
a(4) = 5: 1324, 1423, 2314, 2413, 3412.
a(5) = 19: 12345, 12435, 12534, 13245, 13425, 13524, 14235, 14523, 15234, 23145, 23415, 23514, 24135, 24513, 25134, 34125, 34512, 35124, 45123.
-
g:= n-> `if`(n=0 or isprime(n), 1, 0):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
-
g[n_] := If[n == 0 || PrimeQ[n], 1, 0];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)
-
from functools import lru_cache
from sympy import isprime
def g(n): return int(n == 0 or isprime(n))
@lru_cache(maxsize=None)
def b(u, o, t):
if u + o == 0: return g(t)
return (sum(b(u-j, o+j-1, 1) for j in range(1, u+1)) if g(t) else 0) +\
sum(b(u+j-1, o-j, t+1) for j in range(1, o+1))
def a(n): return b(n, 0, 0)
print([a(n) for n in range(28)]) # Michael S. Branicky, Mar 29 2021 after Alois P. Heinz
A273998
Number of endofunctions on [n] whose cycle lengths are primes.
Original entry on oeis.org
1, 0, 1, 8, 75, 904, 13255, 229536, 4587961, 103971680, 2634212961, 73787255200, 2264440519891, 75563445303072, 2724356214102055, 105546202276277504, 4373078169296869425, 192970687573630633216, 9035613818754820178689, 447469496697658409400960
Offset: 0
-
b:= proc(n) option remember; local r, p;
if n=0 then 1 else r, p:=0, 2;
while p<=n do r:= r+(p-1)!*b(n-p)*
binomial(n-1, p-1); p:= nextprime(p)
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, p}, If[n == 0, 1, {r, p} = {0, 2}; While[p <= n, r = r + (p - 1)!*b[n - p]*Binomial[n-1, p-1]; p = NextPrime[p]]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A329944
Number of permutations of [n] whose cycle lengths avoid primes.
Original entry on oeis.org
1, 1, 1, 1, 7, 31, 211, 1051, 10081, 107857, 1227241, 8969401, 108817831, 1173362191, 19426473067, 320062090531, 5692838161921, 70426164947041, 1346222143950481, 21952313047471537, 493701484264143751, 10971915198235355071, 266542798822750395331
Offset: 0
a(4) = 7: (1)(2)(3)(4), (1234), (1243), (1324), (1342), (1423), (1432).
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(isprime(j), 0,
a(n-j)*binomial(n-1, j-1)*(j-1)!), j=1..n))
end:
seq(a(n), n=0..25);
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[PrimeQ[j], 0,
a[n-j] Binomial[n-1, j-1] (j-1)!], {j, 1, n}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 31 2021, after Alois P. Heinz *)
A305618
Expansion of e.g.f. log(1 + Sum_{k>=1} x^prime(k)/prime(k)!).
Original entry on oeis.org
0, 1, 1, -3, -9, 20, 190, -126, -6280, -10326, 293041, 1519320, -16985045, -194560444, 1013712777, 27317463952, -19210030599, -4305097718760, -17733269020226, 743855089334604, 7868686621862292, -132351392654695270, -2854492900112993039, 20150897206881256464
Offset: 1
E.g.f.: A(x) = x^2/2! + x^3/3! - 3*x^4/4! - 9*x^5/5! + 20*x^6/6! + ...
exp(A(x)) = 1 + x^2/2! + x^3/3! + x^5/5! + x^7/7! + ... + x^A000040(k)/A039716(k) + ...
exp(exp(A(x))-1) = 1 + x^2/2! + x^3/3! + 3*x^4/4! + 11*x^5/5! + ... + A190476(k)*x^k/k! + ...
-
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(a(j)*t(n-j)*
j*binomial(n, j), j=1..n-1)/n))(i-> `if`(isprime(i), 1, 0))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Dec 04 2018
-
nmax = 24; Rest[CoefficientList[Series[Log[1 + Sum[x^Prime[k]/Prime[k]!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
a[n_] := a[n] = Boole[PrimeQ[n]] - Sum[k Binomial[n, k] Boole[PrimeQ[n - k]] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 24}]
A353162
Expansion of e.g.f. exp(Sum_{p prime} p * x^p).
Original entry on oeis.org
1, 0, 4, 18, 48, 1320, 4200, 115920, 994560, 11793600, 264055680, 2601244800, 67761429120, 1067726499840, 21513457405440, 485310649824000, 9925206939648000, 254012624170905600, 6174538264806912000, 160933619800835481600, 4458470291543671603200
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*k*x^k))))
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, isprime(k)*k^2*a(n-k)/(n-k)!));
A305619
Expansion of e.g.f. log(1 + Sum_{k>=1} x^prime(k)/prime(k)).
Original entry on oeis.org
0, 1, 2, -3, 4, -10, 636, -1078, -18416, -131976, 5035920, 5333592, 187347744, -4079616528, -14669908512, -140154110640, 28743506893056, -92449999037568, 2738959517576448, -52969092379214976, 34211286306178560, -16812071564735736576, 1407763084021569335808
Offset: 1
E.g.f.: A(x) = x^2/2! + 2*x^3/3! - 3*x^4/4! + 4*x^5/5! - 10*x^6/6! + ...
exp(A(x)) = 1 + x^2/2 + x^3/3 + x^5/5 + x^7/7 + ... + x^A000040(k)/A000040(k) + ...
exp(exp(A(x))-1) = 1 + x^2/2! + 2*x^3/3! + 3*x^4/4! + 44*x^5/5! + ... + A218002(k)*x^k/k! + ...
-
a:=series(log(1+add(x^ithprime(k)/ithprime(k),k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; Rest[CoefficientList[Series[Log[1 + Sum[x^Prime[k]/Prime[k], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
a[n_] := a[n] = Boole[PrimeQ[n]] (n - 1)! - Sum[k Binomial[n, k] Boole[PrimeQ[n - k]] (n - k - 1)! a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 23}]
A347949
E.g.f.: 1 / (1 - Sum_{k>=1} x^prime(k) / prime(k)).
Original entry on oeis.org
1, 0, 1, 2, 6, 64, 170, 2988, 14616, 180192, 1934712, 21673200, 300266736, 4220710272, 61785461712, 1003589762784, 17448621367680, 327598207658496, 6279739240655232, 134169095009652480, 2817563310900129024, 64570676279407718400, 1547773850801172960000, 38824156236466815920640
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/Prime[k], {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! Boole[PrimeQ[k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
Showing 1-8 of 8 results.
Comments