cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305618 Expansion of e.g.f. log(1 + Sum_{k>=1} x^prime(k)/prime(k)!).

Original entry on oeis.org

0, 1, 1, -3, -9, 20, 190, -126, -6280, -10326, 293041, 1519320, -16985045, -194560444, 1013712777, 27317463952, -19210030599, -4305097718760, -17733269020226, 743855089334604, 7868686621862292, -132351392654695270, -2854492900112993039, 20150897206881256464
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 06 2018

Keywords

Comments

Logarithmic transform of A010051.

Examples

			E.g.f.: A(x) = x^2/2! + x^3/3! - 3*x^4/4! - 9*x^5/5! + 20*x^6/6! + ...
exp(A(x)) = 1 + x^2/2! + x^3/3! + x^5/5! + x^7/7! + ... + x^A000040(k)/A039716(k) + ...
exp(exp(A(x))-1) = 1 + x^2/2! + x^3/3! + 3*x^4/4! + 11*x^5/5! + ... + A190476(k)*x^k/k! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(a(j)*t(n-j)*
           j*binomial(n, j), j=1..n-1)/n))(i-> `if`(isprime(i), 1, 0))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Dec 04 2018
  • Mathematica
    nmax = 24; Rest[CoefficientList[Series[Log[1 + Sum[x^Prime[k]/Prime[k]!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
    a[n_] := a[n] = Boole[PrimeQ[n]] - Sum[k Binomial[n, k] Boole[PrimeQ[n - k]] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 24}]

A329261 Expansion of e.g.f. -log(1 - Sum_{k>=1} x^prime(k) / prime(k)!).

Original entry on oeis.org

0, 0, 1, 1, 3, 11, 40, 232, 1246, 8912, 65766, 561001, 5198424, 52513111, 577791292, 6806860347, 86303601008, 1163845620633, 16701819148776, 253608108810052, 4065574363467636, 68608467057149112, 1215544196988580438, 22564088376584800717
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - Sum[x^Prime[k]/Prime[k]!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Boole[PrimeQ[n]] + Sum[Binomial[n, k] Boole[PrimeQ[n - k]] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0; a(n) = A010051(n) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * A010051(n-k) * k * a(k).
Showing 1-2 of 2 results.