A205801
Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).
Original entry on oeis.org
1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022
A218002
E.g.f.: exp( Sum_{n>=1} x^prime(n) / prime(n) ).
Original entry on oeis.org
1, 0, 1, 2, 3, 44, 55, 1434, 3913, 39752, 392481, 5109290, 34683451, 914698212, 5777487703, 91494090674, 1504751645265, 31764834185744, 379862450767873, 12634073744624082, 132945783064464691, 2753044719709341980, 64135578414076991031, 1822831113987975441482
Offset: 0
E.g.f.: A(x) = 1 + x^2/2! + 2*x^3/3! + 3*x^4/4! + 44*x^5/5! + 55*x^6/6! + 1434*x^7/7! + ...
where
log(A(x)) = x^2/2 + x^3/3 + x^5/5 + x^7/7 + x^11/11 + x^13/13 + x^17/17 + x^19/19 + x^23/23 + x^29/29 + ... + x^prime(n)/prime(n) + ...
a(5) = 44 because there are 5!/5 = 24 permutations that are 5-cycles and there are 5!/(2*3) = 20 permutations that are the disjoint product of a 2-cycle and a 3-cycle. - _Geoffrey Critzer_, Nov 08 2015
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(isprime(j),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Apply[And, PrimeQ[#]] &]]], {n, 0,23}] (* Geoffrey Critzer, Nov 08 2015 *)
-
{a(n)=n!*polcoeff(exp(sum(k=1,n,x^prime(k)/prime(k))+x*O(x^n)),n)}
for(n=0,31,print1(a(n),", "))
A193374
E.g.f.: A(x) = exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2) ).
Original entry on oeis.org
1, 1, 1, 3, 9, 21, 201, 1191, 4593, 36009, 620721, 5297931, 40360761, 474989373, 4345942329, 122776895151, 2118941145441, 21344580276561, 303071564084193, 4476037678611219, 59935820004483561, 3838519441659950181, 78361805638079449641, 949279542954821272503
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 201*x^6/6! +...
where
log(A(x)) = x + x^3/3 + x^6/6 + x^10/10 + x^15/15 + x^21/21 +...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(8*j+1),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[8*j + 1], a[n - j]*(j - 1)!*Binomial[n - 1, j - 1], 0], {j, 1, n}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
-
{a(n)=n!*polcoeff(exp(sum(m=1,sqrtint(2*n+1),x^(m*(m+1)/2)/(m*(m+1)/2)+x*O(x^n))),n)}
A317128
Number of permutations of [n] whose lengths of increasing runs are Fibonacci numbers.
Original entry on oeis.org
1, 1, 2, 6, 23, 112, 652, 4425, 34358, 299971, 2910304, 31059715, 361603228, 4560742758, 61947243329, 901511878198, 13994262184718, 230811430415207, 4030772161073249, 74301962970014978, 1441745847111969415, 29374226224980834077, 626971133730275593916
Offset: 0
-
g:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
-
g[n_] := With[{t = 5n^2}, If[IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4], 1, 0]];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)
A273994
Number of endofunctions on [n] whose cycle lengths are Fibonacci numbers.
Original entry on oeis.org
1, 1, 4, 27, 250, 2975, 43296, 744913, 14797036, 333393345, 8403026320, 234300271811, 7161316358616, 238108166195263, 8556626831402560, 330494399041444425, 13654219915946513296, 600870384794864432897, 28060233470995898505024, 1386000542545570348128235
Offset: 0
-
b:= proc(n) option remember; local r, f, g;
if n=0 then 1 else r, f, g:= $0..2;
while f<=n do r:= r+(f-1)!*b(n-f)*
binomial(n-1, f-1); f, g:= g, f+g
od; r fi
end:
a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {g, f + g}]; r]];
a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)
A272603
Number of permutations of [n] whose cycle lengths are factorials.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 196, 1072, 7484, 42940, 261496, 1477136, 15219832, 134828344, 1488515120, 13692017536, 130252442896, 1123580329232, 14639510308384, 173489066401600, 2528654220104096, 31472160333513376, 402634734214583872, 4645625988351336704, 25925035549644280991680
Offset: 0
-
a:= proc(n) option remember; local r, f, i;
if n=0 then 1 else r, f, i:= $0..2;
while f<=n do r:= r +a(n-f)*(f-1)!*
binomial(n-1, f-1); f, i:= f*i, i+1
od; r
fi
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 04 2016
-
nmax = 4; egf = Exp[Sum[x^n!/n!, {n, 1, nmax}]] + O[x]^(nmax! + 1); CoefficientList[egf, x]*Range[0, nmax!]! (* Jean-François Alcover, Feb 19 2017 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(n=1,10,x^(n!)/n!))))
Showing 1-6 of 6 results.
Comments