cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A205801 Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of permutations of [n] whose cycle lengths are squares. - Alois P. Heinz, May 12 2016

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
           a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 12 2016
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

The e.g.f. A(x)=1+a(1)x+a(2)x^2/2!+... is equal to the power series expansion of the product of (1-x^n)^{-lambda(n)/n} (n=1,2,...) where lambda(n) is the Liouville function A008836 (follows easily from the Lambert series of lambda(n) - see e. g., the Wikipedia link). - Mamuka Jibladze, Jan 12 2014
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor(sqrt(n))} a(n-k^2)/(n-k^2)!. - Seiichi Manyama, Apr 29 2022

A218002 E.g.f.: exp( Sum_{n>=1} x^prime(n) / prime(n) ).

Original entry on oeis.org

1, 0, 1, 2, 3, 44, 55, 1434, 3913, 39752, 392481, 5109290, 34683451, 914698212, 5777487703, 91494090674, 1504751645265, 31764834185744, 379862450767873, 12634073744624082, 132945783064464691, 2753044719709341980, 64135578414076991031, 1822831113987975441482
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2012

Keywords

Comments

Conjecture: a(n) = number of degree-n permutations of prime order.
The conjecture is false. Cf. A214003. This sequence gives the number of n-permutations whose cycle lengths are restricted to the prime numbers. - Geoffrey Critzer, Nov 08 2015

Examples

			E.g.f.: A(x) = 1 + x^2/2! + 2*x^3/3! + 3*x^4/4! + 44*x^5/5! + 55*x^6/6! + 1434*x^7/7! + ...
where
log(A(x)) = x^2/2 + x^3/3 + x^5/5 + x^7/7 + x^11/11 + x^13/13 + x^17/17 + x^19/19 + x^23/23 + x^29/29 + ... + x^prime(n)/prime(n) + ...
a(5) = 44 because there are 5!/5 = 24 permutations that are 5-cycles and there are 5!/(2*3) = 20 permutations that are the disjoint product of a 2-cycle and a 3-cycle. - _Geoffrey Critzer_, Nov 08 2015
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(isprime(j),
          a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 12 2016
  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Apply[And, PrimeQ[#]] &]]], {n, 0,23}] (* Geoffrey Critzer, Nov 08 2015 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=1,n,x^prime(k)/prime(k))+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))

A193374 E.g.f.: A(x) = exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2) ).

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 201, 1191, 4593, 36009, 620721, 5297931, 40360761, 474989373, 4345942329, 122776895151, 2118941145441, 21344580276561, 303071564084193, 4476037678611219, 59935820004483561, 3838519441659950181, 78361805638079449641, 949279542954821272503
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2011

Keywords

Comments

Number of permutations of [n] whose cycle lengths are triangular numbers. - Alois P. Heinz, May 12 2016

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 201*x^6/6! +...
where
log(A(x)) = x + x^3/3 + x^6/6 + x^10/10 + x^15/15 + x^21/21 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(8*j+1),
           a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 12 2016
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[8*j + 1], a[n - j]*(j - 1)!*Binomial[n - 1, j - 1], 0], {j, 1, n}]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,sqrtint(2*n+1),x^(m*(m+1)/2)/(m*(m+1)/2)+x*O(x^n))),n)}

A317128 Number of permutations of [n] whose lengths of increasing runs are Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 6, 23, 112, 652, 4425, 34358, 299971, 2910304, 31059715, 361603228, 4560742758, 61947243329, 901511878198, 13994262184718, 230811430415207, 4030772161073249, 74301962970014978, 1441745847111969415, 29374226224980834077, 626971133730275593916
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
    b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
          `if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
           add(b(u+j-1, o-j, t+1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..27);
  • Mathematica
    g[n_] := With[{t = 5n^2}, If[IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4], 1, 0]];
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
         If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
         Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)

A273994 Number of endofunctions on [n] whose cycle lengths are Fibonacci numbers.

Original entry on oeis.org

1, 1, 4, 27, 250, 2975, 43296, 744913, 14797036, 333393345, 8403026320, 234300271811, 7161316358616, 238108166195263, 8556626831402560, 330494399041444425, 13654219915946513296, 600870384794864432897, 28060233470995898505024, 1386000542545570348128235
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2016

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local r, f, g;
          if n=0 then 1 else r, f, g:= $0..2;
          while f<=n do r:= r+(f-1)!*b(n-f)*
             binomial(n-1, f-1); f, g:= g, f+g
          od; r fi
        end:
    a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, r = r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1]; {f, g} = {g, f + g}]; r]];
    a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 06 2018, from Maple *)

A272603 Number of permutations of [n] whose cycle lengths are factorials.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 196, 1072, 7484, 42940, 261496, 1477136, 15219832, 134828344, 1488515120, 13692017536, 130252442896, 1123580329232, 14639510308384, 173489066401600, 2528654220104096, 31472160333513376, 402634734214583872, 4645625988351336704, 25925035549644280991680
Offset: 0

Views

Author

Joerg Arndt, May 29 2016

Keywords

Crossrefs

Cf. A000142, A273001 (cycle lengths are Fibonacci numbers), A272602 (e.g.f.: exp( sum(n>=1, x^(n!) / n ) ) ), A273996, A317132.

Programs

  • Maple
    a:= proc(n) option remember; local r, f, i;
          if n=0 then 1 else r, f, i:= $0..2;
            while f<=n do r:= r +a(n-f)*(f-1)!*
              binomial(n-1, f-1); f, i:= f*i, i+1
            od; r
          fi
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 04 2016
  • Mathematica
    nmax = 4; egf = Exp[Sum[x^n!/n!, {n, 1, nmax}]] + O[x]^(nmax! + 1); CoefficientList[egf, x]*Range[0, nmax!]! (* Jean-François Alcover, Feb 19 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(n=1,10,x^(n!)/n!))))

Formula

E.g.f.: exp( sum(n>=1, x^(n!) / n! ) ).
Showing 1-6 of 6 results.