cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A205801 Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of permutations of [n] whose cycle lengths are squares. - Alois P. Heinz, May 12 2016

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
           a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 12 2016
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

The e.g.f. A(x)=1+a(1)x+a(2)x^2/2!+... is equal to the power series expansion of the product of (1-x^n)^{-lambda(n)/n} (n=1,2,...) where lambda(n) is the Liouville function A008836 (follows easily from the Lambert series of lambda(n) - see e. g., the Wikipedia link). - Mamuka Jibladze, Jan 12 2014
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor(sqrt(n))} a(n-k^2)/(n-k^2)!. - Seiichi Manyama, Apr 29 2022

A317130 Number of permutations of [n] whose lengths of increasing runs are triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 7, 24, 93, 483, 2832, 17515, 123226, 978405, 8312802, 75966887, 756376739, 8070649675, 91320842018, 1099612368110, 14054043139523, 189320856378432, 2682416347625463, 39945105092501742, 623240458310527252, 10160826473676346731, 172871969109661492526
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2018

Keywords

Examples

			a(2) = 1: 21.
a(3) = 2: 123, 321.
a(4) = 7: 1243, 1342, 2134, 2341, 3124, 4123, 4321.
a(5) = 24: 12543, 13542, 14532, 21354, 21453, 23541, 24531, 31254, 31452, 32145, 32451, 34521, 41253, 41352, 42135, 42351, 43125, 51243, 51342, 52134, 52341, 53124, 54123, 54321.
		

Crossrefs

Programs

  • Maple
    g:= n-> `if`(issqr(8*n+1), 1, 0):
    b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
          `if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
           add(b(u+j-1, o-j, t+1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..27);
  • Mathematica
    g[n_] := If[IntegerQ @ Sqrt[8n+1], 1, 0];
    b[u_, o_, t_] := b[u, o, t] = If[u+o==0, g[t], If[g[t]==1, Sum[b[u-j, o+j-1, 1], {j, 1, u}], 0] + Sum[b[u+j-1, o-j, t+1], {j, 1, o}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 27] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)

A273001 Number of permutations of [n] whose cycle lengths are Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 6, 18, 90, 420, 2220, 19020, 130860, 1096920, 9862920, 83843640, 1411202520, 16144792560, 203091829200, 2989264122000, 37012939750800, 597962683188000, 8681244913692000, 126467701221607200, 5006833609034743200, 95602098255580238400
Offset: 0

Views

Author

Alois P. Heinz, May 12 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(issqr(5*j^2+4) or issqr(5*j^2-4),
           a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[5*j^2+4] || IntegerQ @ Sqrt[5*j^2-4], a[n-j]*(j-1)!*Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[ a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 30 2017, translated from Maple *)

Formula

E.g.f.: exp(Sum_{n>=2} x^F(n)/F(n)) with F = A000045.

A305824 Number of endofunctions on [n] whose cycle lengths are triangular numbers.

Original entry on oeis.org

1, 1, 3, 18, 157, 1776, 24807, 413344, 8004537, 176630400, 4374300331, 120136735104, 3623854678677, 119102912981248, 4236492477409935, 162152320065532416, 6645233337842716273, 290321208589666369536, 13469914225467040015827, 661442143465113960448000
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local r, f, g;
          if n=0 then 1 else r, f, g:=$0..2;
          while f<=n do r, f, g:= r+(f-1)!*
             b(n-f)*binomial(n-1, f-1), f+g, g+1
          od; r fi
        end:
    a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_] := b[n] = Module[{r, f, g}, If[n == 0, 1, {r, f, g} = {0, 1, 2}; While[f <= n, {r, f, g} = {r + (f - 1)!*b[n - f]*Binomial[n - 1, f - 1], f + g, g + 1}]; r]];
    a[0] = 1; a[n_] := Sum[b[j]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 15 2018, after Alois P. Heinz *)

A205799 E.g.f.: exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2)! ).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 32, 113, 365, 1373, 6072, 25279, 115633, 606321, 3051413, 16344785, 98402881, 576283953, 3523586227, 23840955908, 158428389359, 1085566420290, 8128568533790, 60203101002122, 455911264482697, 3734114950288571, 30413492882578846
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of set partitions of [n] whose block lengths are triangular numbers. - Alois P. Heinz, Jun 10 2018

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 11*x^5/5! + 32*x^6/6! +...
where
log(A(x)) = x + x^3/3! + x^6/6! + x^10/10! + x^15/15! + x^21/21! +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          issqr(8*j+1), a(n-j)*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 10 2018
  • Mathematica
    m = 30;
    CoefficientList[Exp[Sum[x^(n(n+1)/2)/(n(n+1)/2)!, {n, 1, m}]] + O[x]^m, x]* Range[0, m-1]! (* Jean-François Alcover, Mar 05 2021 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(2*n+1), x^(m*(m+1)/2)/(m*(m+1)/2)!+x*O(x^n))), n)}

A193375 E.g.f.: A(x) = exp( Sum_{n>=1} x^(n*(n+1)/2) ).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 1201, 7771, 30577, 514585, 8089921, 63701551, 832599241, 14055894997, 137066892145, 3084240161731, 70859008063201, 849408115312561, 15997591979202817, 358582896987674455, 6017079190150763641, 209473179919282488301
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 7*x^3/3! + 25*x^4/4! + 61*x^5/5! +...
where
log(A(x)) = x + x^3 + x^6 + x^10 + x^15 + x^21 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,sqrtint(2*n+1),x^(m*(m+1)/2)+x*O(x^n))),n)}
Showing 1-6 of 6 results.