cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A048954 Wendt determinant of n-th circulant matrix C(n).

Original entry on oeis.org

1, -3, 28, -375, 3751, 0, 6835648, -1343091375, 364668913756, -210736858987743, 101832157445630503, 0, 487627751563388801409591, -4875797582053878382039400448, 58623274842128064372315087290368, -1562716604740038367719196682456673375
Offset: 1

Views

Author

Keywords

Comments

det(C(n)) = 0 for n divisible by 6.
The determinant of the circulant matrix is 0 when 6 divides n because the polynomial (x+1)^(6k) - 1 has roots that are roots of unity. See A086569 for a generalization. - T. D. Noe, Jul 21 2003
E. Lehmer claimed and J. S. Frame proved that 2^n - 1 divides a(n) and the quotient abs(a(n))/(2^n - 1) is a perfect square (Ribenboim 1999, p. 128). - Jonathan Sondow, Aug 17 2012
C(n) is the matrix whose first row is [c_1, ..., c_n] where c_i = binomial(n,i-1), and subsequent rows are obtained by cyclically shifting the previous row one place to the right: see examples and PARI code. - M. F. Hasler, Dec 17 2016

Examples

			a(2) = det [ 1 2 ; 2 1 ] = -3.
a(3) = det [ 1 3 3 ; 3 1 3 ; 3 3 1 ] = 28.
a(4) = det [ 1 4 6 4 ; 4 1 4 6 ; 6 4 1 4 ; 4 6 4 1 ] = -375.
		

References

  • P. Ribenboim, "Fermat's Last Theorem for Amateurs", Springer-Verlag, NY, 1999, pp. 126, 136.
  • P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer-Verlag, NY, 1979, pp. 61-63. MR0551363 (81f:10023).

Crossrefs

Cf. A052182 (circulant of natural numbers), A066933 (circulant of prime numbers), A086459 (circulant of powers of 2), A086569, A129205, A215615, A215616.
See A096964 for another definition.

Programs

  • Mathematica
    a[ n_] := Resultant[ x^n - 1, (1+x)^n - 1, x];
  • PARI
    {a(n) = if( n<1, 0, matdet( matrix( n, n, i, j, binomial( n, (j-i)%n ))))}
    
  • PARI
    a(n) = polresultant( x^n - 1, (1+x)^n - 1, x )

Formula

a(2*n) = A129205(n)^2 * (1-4^n).
a(n) = 0 if and only if 6 divides n. If d divides n, then a(d) divides a(n). - Michael Somos, Apr 03 2007
a(n) = (-1)^(n-1) * (2^n - 1) * A215615(n)^2. - Jonathan Sondow, Aug 17 2012
a(2*n) = -3 * A215616(n)^3. - Jonathan Sondow, Aug 18 2012

Extensions

Additional comments from Michael Somos, May 27 2000 and Dec 16 2001

A067276 Determinant of n X n matrix containing the first n^2 primes in increasing order.

Original entry on oeis.org

2, -1, -78, 880, -4656, -14304, -423936, 8342720, 711956736, -615707136, 21057138688, -4663930678272, 211912980656128, -9178450735677440, 40005919124799488, 83013253447139328, -8525111273818357760, -800258888289188708352, -15170733077495639179264
Offset: 1

Views

Author

Rick L. Shepherd, Feb 21 2002

Keywords

Comments

The first column contains the first n primes in increasing order, the second column contains the next n primes in increasing order, etc. Equivalently, first row contains first n primes in increasing order, second row contains next n primes in increasing order, etc. Sequences of determinants of matrices specifically containing primes include A024356 (Hankel matrix), A067549 (first n primes on diagonal, other elements 1), A066933 (cyclic permutations of first n primes in each row) and A067551 (first n primes on diagonal, other elements 0).

Examples

			a(3) = -78 because det[[2,7,17],[3,11,19],[5,13,23]] = -78 (= det[[2,3,5],[7,11,13],[17,19,23]], the determinant of the transpose.).
		

Crossrefs

Programs

  • Magma
    [ Determinant( Matrix(n, n, [ NthPrime(k): k in [1..n^2] ]) ): n in [1..19] ]; // Klaus Brockhaus, May 12 2010
    
  • Maple
    seq(LinearAlgebra:-Determinant(Matrix(n,n,(i,j) -> ithprime(n*(i-1)+j))),n=1..20); # Robert Israel, Jul 12 2017
  • Mathematica
    Table[ Det[ Partition[ Array[Prime, n^2], n]], {n, 19}] (* Robert G. Wilson v, May 26 2006 *)
  • PARI
    for(n=1,20,k=0; m=matrix(n,n,x,y, prime(k=k+1)); print1(matdet(m), ", ")) /* The matrix initialization command above fills columns first: Variables (such as) x and y take on values 1 through n for rows and columns, respectively, with x changing more rapidly and they must be specified even though the 5th argument is not an explicit function of them here. */
    
  • Python
    from sympy.matrices import Matrix
    from sympy import sieve
    def a(n):
        sieve.extend_to_no(n**2)
        return Matrix(n, n, sieve[1:n**2+1]).det()
    print([a(n) for n in range(1, 20)]) # Indranil Ghosh, Jul 31 2017

A086459 Determinant of the circulant matrix whose rows are formed by successively rotating the vector (1, 2, 4, 8, ..., 2^(n-1)) right.

Original entry on oeis.org

1, -3, 49, -3375, 923521, -992436543, 4195872914689, -70110209207109375, 4649081944211090042881, -1227102111503512992112190463, 1291749870339606615892191271170049, -5429914198235566686555216227881787109375
Offset: 1

Views

Author

T. D. Noe, Jul 21 2003

Keywords

Comments

Note that if the rows are rotated left instead of right, the sign of the terms for which n = 0 or 3 (mod 4) is reversed. The n eigenvalues of these circulant matrices lie on the circle of radius 2(2^n - 1)/3 centered at x = (2^n - 1)/3, y = 0. This sequence can be generalized to bases other than 2 and similar results are true.

Examples

			a(3) = determinant of the matrix ((1,2,4),(4,1,2),(2,4,1)) = 49. [Corrected by _T. D. Noe_, Jan 22 2008]
		

References

  • Richard Bellman, Introduction to Matrix Analysis, Second Edition, SIAM, 1970, pp. 242-3.
  • Philip J. Davis, Circulant Matrices, Second Edition, Chelsea, 1994.

Crossrefs

Cf. A048954 (circulant of binomial coefficients), A052182 (circulant of natural numbers), A066933 (circulant of prime numbers).
Cf. A180602 (unsigned, offset 0). [Paul D. Hanna, Sep 11 2010]

Programs

  • Maple
    restart:with (combinat):a:=n->mul(-stirling2(n,2), j=3..n): seq(a(n), n=2..19); # Zerinvary Lajos, Jan 01 2009
  • Mathematica
    Table[x=2^Range[0, n-1]; m=Table[RotateRight[x, i-1], {i, n}]; Det[m], {n, 12}]

Formula

a(n) = (-2^n + 1)^(n-1).
See formulas in A180602, an unsigned version of this sequence with offset 0. [Paul D. Hanna, Sep 11 2010]

A118713 a(n) = determinant of n X n circulant matrix whose first row is A001358(1), A001358(2), ..., A001358(n) where A001358(n) = n-th semiprime.

Original entry on oeis.org

4, -20, 361, -3567, 218053, -3455872, 736439027, -16245418225, 1519211613654, -37662452460912, 20199655476042865, -643524421698841536, 46513669467992431114, -3754367220494585505280, 277686193779526116536293, -123973821931125256333959105, 20103033234038999233385180658
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Comments

Semiprime analog of A066933 Circulant of prime numbers. a(n) alternates in sign. A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A086459 Circulant of powers of 2.

Examples

			a(2) = -20 = determinant
|4,6|
|6,4|.
a(3) = 361 = 19^2 = determinant
|4,6,9|
|9,4,6|
|6,9,4|.
		

Crossrefs

Programs

  • Maple
    A118713 := proc(n)
        local C,r,c ;
        C := Matrix(1..n,1..n) ;
        for r from 1 to n do
        for c from 1 to n do
            C[r,c] := A001358(1+((c-r) mod n)) ;
        end do:
        end do:
        LinearAlgebra[Determinant](C) ;
    end proc:
    seq(A118713(n),n=1..13) ;
  • Mathematica
    nmax = 13;
    sp = Select[Range[3 nmax], PrimeOmega[#] == 2&];
    a[n_] := Module[{M}, M[1] = sp[[1 ;; n]];
       M[k_] := M[k] = RotateRight[M[k - 1]];
       Det[Table[M[k], {k, 1, n}]]];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 16 2023 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Aug 23 2007

A118704 a(n) = determinant of n X n circulant matrix whose first row is the first n distinct Fibonacci numbers A000045(2), A000045(3), ... A000045(n+1).

Original entry on oeis.org

1, -3, 18, -429, 24149, -3813376, 1513739413, -1575456727131, 4215561680804992, -29321025953223722025, 529210578655758192641625, -24875949855198086445567836160, 3047957640551011125902187378426905, -974921913036976554924444728974464589255
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Comments

a(n) alternates in sign.

Examples

			a(2) = -3 because of the determinant -3 =
| 1, 2 |
| 2, 1 |.
a(5) = 24149 = determinant
| 1, 2, 3, 5, 8 |
| 8, 1, 2, 3, 5 |
| 5, 8, 1, 2, 3 |
| 3, 5, 8, 1, 2 |
| 2, 3, 5, 8, 1 |.
		

Crossrefs

See also: A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.

Programs

  • Maple
    a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
            (<<0|1>, <1|1>>^(2+irem(n-i+j, n)))[1, 2])):
    seq(a(n), n=1..15);  # Alois P. Heinz, Oct 23 2009

Formula

a(n) ~ (-1)^(n+1) * phi^(n*(n+1)) / 5^(n/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 10 2025

Extensions

Corrected and extended by Alois P. Heinz, Oct 23 2009

A118705 a(n) = determinant of n X n circulant matrix whose first row is the first n triangular numbers A000217(0), A000217(1), ... A000217(n-1).

Original entry on oeis.org

0, -1, 28, -1360, 105500, -12051585, 1908871832, -400855203840, 107838796034520, -36175347978515625, 14806446317943766420, -7263073394295238840320, 4206546078973080241293076, -2840250692354398785860048105, 2211476237421629752792968750000
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Examples

			a(2) = - 1 because of the determinant -1 =
  | 0, 1 |
  | 1, 0 |.
a(4) = -1360 = determinant
  |0,1,3,6|
  |6,0,1,3|
  |3,6,0,1|
  |1,3,6,0|.
		

Crossrefs

See also: A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.

Programs

  • Maple
    f:= proc(n) uses LinearAlgebra;local i;
      Determinant(Matrix(n, shape=Circulant[[seq(i*(i+1)/2, i=0..n-1)]]))
    end proc:
    map(f, [$1..30]); # Robert Israel, Jan 25 2023
  • Mathematica
    r[n_] := r[n] = Table[k(k+1)/2, {k, 0, n-1}];
    M[n_] := Table[RotateRight[r[n], m-1], {m, 1, n}];
    a[n_] := Det[M[n]];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 11 2023 *)

Formula

a(n) = (-1)^(n-1)*n^(n-2)*(n+1)*(n-1)*((n+1)^n-(n-1)^n)/(6*2^n). [Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 03 2010]

Extensions

More terms from Alois P. Heinz, Mar 16 2017

A118707 a(n) = determinant of n X n circulant matrix whose first row is the first n square numbers 0, 1, ..., (n-1)^2.

Original entry on oeis.org

0, -1, 65, -6720, 1080750, -252806400, 81433562119, -34630270976000, 18813448225370124, -12719917900800000000, 10478214213011739186685, -10333870908014534470926336, 12023263324381930168836397850, -16297888825404790818315505238016
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Examples

			a(2) = -1 because of the determinant -1 =
| 0, 1 |
| 1, 0 |.
a(3) = 65 = determinant
|0,1,4|
|4,0,1|
|1,4,0|.
		

Crossrefs

See also: A000290 The squares: a(n) = n^2. A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.

Formula

a(n) = (-1)^(n-1)*(n-1)*(2*n-1)*n^(n-2)*(n^n-(n-2)^n)/12 [From Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 05 2010]

Extensions

More terms from Alois P. Heinz, Mar 16 2017

A118709 a(n) = determinant of n X n circulant matrix whose first row is the first n cube numbers 0, 1, ..., (n-1)^3.

Original entry on oeis.org

0, -1, 513, -532800, 1077540500, -3831689610000, 22051842087895137, -192710430555501494272, 2433436736207275231050384, -42684202683959414242500000000, 1007311823853329619224620155226025, -31149342348518897782279760206406615040
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Examples

			a(2) = -1 because of the determinant -1 =
| 0, 1 |
| 1, 0 |.
a(3) = 513 = determinant
|0,1,8|
|8,0,1|
|1,8,0|.
a(6) = 22051842087895137 = determinant
|0,1,8,27,64,125,216|
|216,0,1,8,27,64,125|
|125,216,0,1,8,27,64|
|64,125,216,0,1,8,27|
|27,64,125,216,0,1,8|
|8,27,64,125,216,0,1|
|1,8,27,64,125,216,0|.
		

Crossrefs

See also: A000578 The cubes: a(n) = n^3. A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.

Programs

  • Mathematica
    Table[Det[Table[RotateRight[Range[0,i]^3,n],{n,0,i}]],{i,0,10}] (* Harvey P. Dale, Oct 22 2012 *)

Formula

Contribution from Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 05 2010: (Start)
a(n) = (-1)^(n-1)*(n-1)^2*n^(n-2)*(n^(2n)-b(n)^n-c(n)^n+(n^2-3n+3)^n)/24
where
b(n)=(2*n^2-3*n-3+sqrt(15n^2-18n-9)i)/2 and
c(n)=(2*n^2-3*n-3-sqrt(15n^2-18n-9)i)/2 (End)

Extensions

More terms from Harvey P. Dale, Oct 22 2012

A118712 a(n) = Determinant of n X n circulant matrix whose first row is A000001(1), A000001(2), ..., A000001(n) where A000001(n) = number of groups of order n.

Original entry on oeis.org

1, 0, 0, -5, 6, -16, 9, -134400, 647248, -1711908, 6076067, -85248000, 116477425, -1764364437, 909276004, -522319050599375232, 14313181351994538493, -165893335414907083200, 2939566160282258664451, -5007637771411479278976, 75399747694572065660672
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Examples

			a(4) = -5 because of the determinant -5 =
|1,1,1,2|
|2,1,1,1|
|1,2,1,1|
|1,1,2,1|.
a(11) = 6076067 = determinant
|1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1|
|1, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2|
|2, 1, 1, 1, 1, 2, 1, 2, 1, 5, 2|
|2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 5|
|5, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1|
|1, 5, 2, 2, 1, 1, 1, 1, 2, 1, 2|
|2, 1, 5, 2, 2, 1, 1, 1, 1, 2, 1|
|1, 2, 1, 5, 2, 2, 1, 1, 1, 1, 2|
|2, 1, 2, 1, 5, 2, 2, 1, 1, 1, 1|
|1, 2, 1, 2, 1, 5, 2, 2, 1, 1, 1|
|1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 1|.
		

Crossrefs

Programs

  • GAP
    A118712 := n -> DeterminantMat(List([0..n-1], i->List([0..n-1], j->NrSmallGroups(((j-i) mod n)+1)))); # Eric M. Schmidt, Nov 17 2013

Extensions

a(1) corrected by and more terms from Eric M. Schmidt, Nov 17 2013

A338424 Permanent of n X n matrix whose rows are cyclic permutations of 2..prime(n).

Original entry on oeis.org

1, 2, 13, 250, 8961, 821848, 90031117, 16929468082, 3699112438993, 1172372082948016, 592930150554224105, 314980461163972949868, 237098727748233796765441, 209617206588771062279193558, 193794661072190257001413994605, 210096924743130844484817519143524, 287845708921326527700201694718406369
Offset: 0

Views

Author

Stefano Spezia, Oct 25 2020

Keywords

Examples

			a(3) = 250 because the permanent of [(2,3,5), (3,5,2), (5,2,3)] is 250.
		

Crossrefs

Programs

  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, prime((i+j-2) % n + 1)))
Showing 1-10 of 11 results. Next