cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A119498 Consider the sign of A067276: determinant of n X n matrix containing the first n^2 primes in increasing order; then a(n) = 0 if negative and 1 if positive.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Robert G. Wilson v, May 26 2006

Keywords

Comments

The determinant of A can never be 0 since there is an even prime in the mix.
Conjecture: This sequence never cycles.
Positions where the race between the zeros and the ones is tied: 2,4,16,34,36,38,40,42,46,66,78,80,82,84, ...,.

Crossrefs

Programs

  • Mathematica
    f[n_] := Sign@ Det@ Partition[ Array[Prime, n^2], n]; Array[f, 105] /. -1 -> 0

A023999 Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling inward, starting in a corner.

Original entry on oeis.org

1, 5, 48, 660, 11760, 257040, 6652800, 198918720, 6745939200, 255826771200, 10727081164800, 492775291008000, 24610605962342400, 1327677426915840000, 76940526008586240000, 4766815315895592960000, 314406967644177408000000, 21995911456386651463680000
Offset: 1

Views

Author

Charles Diminnie (charles.diminnie(AT)rampo.angelo.edu)

Keywords

Comments

Starting in the NW or SE corner, the signs are cyclic (+,-,-,+), starting in the NE or SW corner, the signs are always positive.

Examples

			n=4: det of
.1..2..3.4
12.13.14.5
11.16.15.6
10..9..8.7
		

Crossrefs

Main diagonal of A226167, A126224 (signed version). - Alois P. Heinz, Jan 21 2014

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, (3*n+1)/4,
          4*(3*n-1)*(2*n-5)*(2*n-3) *a(n-2) /(3*n-7))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    M[0, 0] = 1;
    M[i_, j_] := If[i <= j,
      If[i + j >= 0, If[i != j, M[i + 1, j] + 1, M[i, j - 1] + 1],
       M[i, j + 1] + 1],
      If[i + j > 1, M[i, j - 1] + 1, M[i - 1, j] + 1]
      ]
    M[n_] := n^2 + 1 - If[EvenQ[n],
      Table[M[i, j], {j, n/2, -n/2 + 1, -1}, {i, -n/2 + 1, n/2}],
      Table[M[i, j], {j, (n - 1)/2, -(n - 1)/2, -1}, {i, -(n - 1)/2, (n - 1)/2}]]
    a[n_]:=Det[M[n]] (* Christian Krattenthaler, Apr 19 2017 *)
  • Maxima
    A023999(n):=if n=1 then 1 else 2*((-1)^((n+4)*(n-1))/2 *(3*n-1) * (2*n-3)!/(n-2)!)$
    makelist(A023999(n),n,1,30); /* Martin Ettl, Nov 05 2012 */

Formula

a(n) = (3n-1) * (2n-3)!/(n-2)! for n >= 2. [corrected by Robert Israel, Apr 20 2017]
E.g.f.: ((-2*x-1)*sqrt(1-4*x)+1-4*x)/(16*x-4). - Robert Israel, Apr 20 2017

Extensions

Edited and extended by Robert G. Wilson v, May 07 2003

A114533 Permanent of the n X n matrix with numbers prime(1),prime(2),...,prime(n^2) in order across rows.

Original entry on oeis.org

1, 2, 29, 3746, 1919534, 2514903732, 6571874957648, 30662862975835376, 228731722381012564816, 2641049525155781555257440, 43818773386947889568479502592, 1014966115357067575070490776083200, 31412851866841234377483875199638978304
Offset: 0

Views

Author

Simone Severini, Feb 15 2006

Keywords

Comments

Previous name was : "a(n) = permanent of the n X n matrix M defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i is the i-th prime number".

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n->`if`(n=0, 1, Permanent(Matrix(n, (i, j)->ithprime((i-1)*n+j)))):
    seq(a(n), n=0..12);  # Alois P. Heinz, Dec 23 2013
  • Mathematica
    a[n_] := Permanent[Table[Prime[(i-1)*n+j], {i, 1, n}, {j, 1, n}]]; a[0]=1; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 12}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
    Join[{1},Table[Permanent[Partition[Prime[Range[n^2]],n]],{n,15}]] (* Harvey P. Dale, Aug 03 2019 *)
  • PARI
    permRWN(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); n1=n-1; sg=1; m=1; nc=0; in=vector(n); x=in; for(i=1,n,x[i]=a[i,n]-sum(j=1,n,a[i,j])/2); p=prod(i=1,n,x[i]); while(m,sg=-sg; j=1; if((nc%2)!=0,j++; while(in[j-1]==0,j++)); in[j]=1-in[j]; z=2*in[j]-1; nc+=z; m=nc!=in[n1]; for(i=1,n,x[i]+=z*a[i,j]); p+=sg*prod(i=1,n,x[i])); return(2*(2*(n%2)-1)*p)
    for(n=1,19,a=matrix(n,n,i,j,prime((i-1)*n+j)); print1(permRWN(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 11 2007
    
  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(n=1,23,a=matrix(n,n,i,j,prime((i-1)*n+j));print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007
    
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, prime((i-1)*n+j)))}
    for(n=0, 25, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 13 2021

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 11 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007
New name from Michel Marcus, Nov 30 2013
a(0) inserted and a(12) by Alois P. Heinz, Dec 23 2013

A118770 Determinant of n X n matrix containing the first n^2 semiprimes in increasing order.

Original entry on oeis.org

4, -14, -196, 480, 696, -57901, -525364, -409579, 18528507, -237549252, -2119519900, 6713972874, 18262155072, -19072020914992, 162234208372185, 1471912942112734, 6828673030820538, -35126752028893500, 729026655790306778, -15365360727898374618
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2006

Keywords

Comments

Semiprime analog of A067276 Determinant of n X n matrix containing the first n^2 primes in increasing order. The first column contains the first n semiprimes in increasing order, the second column contains the next n semiprimes in increasing order, etc. Equivalently, first row contains first n semiprimes in increasing order, second row contains next n semiprimes in increasing order, etc. See also: A118713 a(n) = determinant of n X n circulant matrix whose first row is A001358(1), A001358(2), ..., A001358(n) where A001358(n) = n-th semiprime.

Examples

			a(2) = -14 because of the determinant -14 =
|4,6 |
|9,10|.
a(6) = -57901 = the determinant
|4, 6, 9, 10, 14, 15,|
|21, 22, 25, 26, 33, 34,|
|35, 38, 39, 46, 49, 51,|
|55, 57, 58, 62, 65, 69,|
|74, 77, 82, 85, 86, 87,|
|91, 93, 94, 95, 106, 111|.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimePi[ n_ ] := Sum[ PrimePi[ n/Prime @ i ] - i + 1, {i, PrimePi @ Sqrt @ n} ]; SemiPrime[ n_ ] := Block[ {e = Floor[ Log[ 2, n ] + 1 ], a, b}, a = 2^e; Do[ b = 2^p; While[ SemiPrimePi[ a ] < n, a = a + b ]; a = a - b/2, {p, e, 0, -1} ]; a + b/2 ]; Table[ Det[ Partition[ Array[ SemiPrime, n^2 ], n ] ], {n, 20} ] (* Robert G. Wilson v, May 26 2006 *)
    Module[{nn=5000,spr},spr=Select[Range[nn],PrimeOmega[#]==2&];Table[Det[ Partition[ Take[spr,n^2],n]],{n,Sqrt[Length[spr]]}]] (* Harvey P. Dale, Nov 21 2018 *)

Extensions

More terms from Robert G. Wilson v, May 26 2006
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016

A118799 Determinants of 4 X 4 matrices of 16 consecutive primes.

Original entry on oeis.org

880, -448, -1472, -240, 2480, -1352, -4128, -96, 2736, -2520, 120, 1080, 4288, 4880, 4600, 13368, 7056, 14560, 2960, 13320, 0, 24864, -11096, -24264, 0, -9168, -2128, -15792, 0, 18120, -5248, 6384, -21840, -38776, -20480, 20176, -72896, -69200, 40080, -37632
Offset: 1

Views

Author

Jonathan Vos Post, May 23 2006

Keywords

Comments

4 X 4 analog of A117330.
All terms are even. - Harvey P. Dale, May 05 2016

Examples

			a(1) = 880 =
  | 2  3  5  7|
  |11 13 17 19|
  |23 29 31 37|
  |41 43 47 53|.
a(10) = -2520 =
  |29 31 37 41|
  |43 47 53 59|
  |61 67 71 73|
  |79 83 89 97|.
a(21) = 0 =
  | 73  79  83  89|
  | 97 101 103 107|
  |109 113 127 131|
  |137 139 149 151|.
		

Crossrefs

Programs

  • Maple
    A118799 := proc(n)
        local A,i,r,c ;
        A := Matrix(4,4) ;
        i := n ;
        for r from 1 to 4 do
        for c from 1 to 4 do
            A[r,c] := ithprime(i) ;
            i := i+1 ;
        end do:
        end do:
        LinearAlgebra[Determinant](A) ;
    end proc: # R. J. Mathar, May 05 2013
  • Mathematica
    Module[{nn=60,prs},prs=Prime[Range[nn]];Table[Det[Partition[ Take[ prs, {n,n+15}],4]],{n,nn-15}]] (* Harvey P. Dale, Apr 29 2016 *)
  • PARI
    a(n) = matdet(matrix(4,4,i,j,prime((n+j-1)+4*(i-1)))); \\ Michel Marcus, Jan 25 2021

A079340 Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling outward, ending in a corner.

Original entry on oeis.org

1, 5, 72, 1380, 31920, 861840, 26611200, 925404480, 35805369600, 1526139014400, 71066912716800, 3590219977344000, 195589552648089600, 11430978821982720000, 713448513897799680000, 47363888351558338560000
Offset: 1

Views

Author

Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 03 2003

Keywords

Comments

If n == 0 or 1 (mod 4), the sign of the determinant will be independent of the orientation of the spiral. For n == 2 or 3 (mod 4), the sign will be reversed when the orientation is rotated by 1/4 or flipped on the horizontal or vertical axis. - Franklin T. Adams-Watters, Dec 31 2013
This distribution of the integers is sometimes known as Ulam's spiral, although that is sometimes reserved for when the primes are marked out in some way. - Franklin T. Adams-Watters, Dec 31 2013

Examples

			n=2, det=-5: {1 2 / 4 3 }.
n=3, det=72: {7 8 9 / 6 1 2 / 5 4 3 }.
n=4, det=-1380: { 7 8 9 10 / 6 1 2 11 /5 4 3 12 / 16 15 14 13 }.
n=5, det=31920: { 21 22 23 24 25 / 20 7 8 9 10 / 19 6 1 2 11 /18 5 4 3 12 / 17 16 15 14 13 }
		

Crossrefs

Programs

  • Mathematica
    M[0, 0] = 1;
    M[i_, j_] := If[i <= j,
      If[i + j >= 0, If[i != j, M[i + 1, j] + 1, M[i, j - 1] + 1],
       M[i, j + 1] + 1],
      If[i + j > 1, M[i, j - 1] + 1, M[i - 1, j] + 1]
      ]
    M[n_] := If[EvenQ[n],
      Table[M[i, j], {j, n/2, -n/2 + 1, -1}, {i, -n/2 + 1, n/2}],
      Table[M[i, j], {j, (n - 1)/2, -(n - 1)/2, -1}, {i, -(n - 1)/2, (n - 1)/2}]]
    a[n_]:=Det[M[n]] (* Christian Krattenthaler, Apr 19 2017 *)
  • Maxima
    A079340(n):=if n=1 then 1 else (2*n^2-3*n+3)*(2*n-2)!/(2*(n-1)!)$
    makelist(A079340(n),n,1,30); /* Martin Ettl, Nov 05 2012 */

Formula

a(n) = (2*n^2-3*n+3) (2n-2)!/(2 (n-1)!) = A096376(n-1)*A000407(n-2), n>1. - Conjectured by Dean Hickerson, Jan 30 2003. Proved in the article by Bhatnagar and Krattenthaler.
D-finite with recurrence (2*n^2-7*n+8)*a(n) -2*(2*n-3)*(2*n^2-3*n+3)*a(n-1)=0. - R. J. Mathar, May 03 2019

Extensions

Extended by Robert G. Wilson v, Jan 25 2003

A118772 Determinant of n X n matrix containing the first n^2 3-almost primes in increasing order.

Original entry on oeis.org

8, -56, 156, 13328, -920, -83678, 1261988, 54252742, 214409844, -3528354250, 247094703588, -509185323508, 15154985424718, 884710401396570, 49777180907707320, -172913218088289027, 844641410704177098, 3066058962037715903, -33948947842497666568
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2006

Keywords

Comments

3-almost prime analog of A067276 Determinant of n X n matrix containing the first n^2 primes in increasing order. The first column contains the first n 3-almost primes in increasing order, the second column contains the next n 3-almost primes in increasing order, etc. Equivalently, first row contains first n 3-almost primes in increasing order, second row contains next n 3-almost primes in increasing order, etc. See also: A118713 a(n) = semiprime circulant.

Examples

			a(2) = -56 because of the determinant -56 =
|8, 12|
18, 20|.
a(6) = -83678 because of the determinant -83678 =
| 8, 12, 18, 20, 27, 28|
| 30, 42, 44, 45, 50, 52|
| 63, 66, 68, 70, 75, 76|
| 78, 92, 98, 99, 102, 105|
| 110, 114, 116, 117, 124, 125|
| 130, 138, 147, 148, 153, 154|.
		

Crossrefs

Programs

  • Mathematica
    ThreeAlmostPrimePi[ n_ ] := Sum[ PrimePi[ n/(Prime @ i*Prime @ j) ] - j + 1, {i, PrimePi[ n^(1/3) ]}, {j, i, PrimePi@ Sqrt[ n/Prime @ i ]} ]; ThreeAlmostPrime[ n_ ] := Block[ {e = Floor[ Log[ 2, n ] + 1 ], a, b}, a = 2^e; Do[ b = 2^p; While[ ThreeAlmostPrimePi[ a ] < n, a = a + b ]; a = a - b/2, {p, e, 0, -1} ]; a + b/2 ]; Table[ Det[ Partition[ Array[ ThreeAlmostPrime, n^2 ], n ] ], {n, 19} ] (* Robert G. Wilson v, May 26 2006 *)
    With[{tap=Select[Range[4000],PrimeOmega[#]==3&]},Table[Det[ Partition[ Take[tap,n^2],n]],{n,20}]] (* Harvey P. Dale, Apr 17 2020 *)

Extensions

More terms from Robert G. Wilson v, May 26 2006
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016

A118779 Determinant of n X n matrix containing the first n^2 4-almost primes in increasing order.

Original entry on oeis.org

16, -224, 0, 182016, 12734992, -80430368, -125120640, 1334967760, 1060202222660, -2759409121760, 54820105989504, -14148083510835712, 49989643415528010, 299304923505836144, 1713123391839442498, 93227182153040103540, -86403659709730762670
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2006

Keywords

Comments

4-almost prime analog of A067276 Determinant of n X n matrix containing the first n^2 primes in increasing order. The first column contains the first n 4-almost primes (A014613) in increasing order, the second column contains the next n 4-almost primes in increasing order, etc. Equivalently, first row contains first n 4-almost primes in increasing order, second row contains next n 4-almost primes in increasing order, etc. See also: A118713 a(n) = semiprime circulant.

Examples

			a(2) = -224 because of the determinant -224 =
|16, 24|
|36, 40|.
a(3) = 0 because this matrix is singular: 0 =
|16, 24, 36|
|40, 54, 56|
|60, 81, 84|.
a(6) = -80430368 because of the determinant -80430368 =
| 16, 24, 36, 40, 54, 56|
| 60, 81, 84, 88, 90, 100|
| 104, 126, 132, 135, 136, 140|
| 150, 152, 156, 184, 189, 196|
| 198, 204, 210, 220, 225, 228|
| 232, 234, 248, 250, 260, 276|.
a(8) = 1334967760 =
| 16, 24, 36, 40, 54, 56, 60, 81|
| 84, 88, 90, 100, 104, 126, 132, 135|
|136, 140, 150, 152, 156, 184, 189, 196|
|198, 204, 210, 220, 225, 228, 232, 234|
|248, 250, 260, 276, 294, 296, 297, 306|
|308, 315, 328, 330, 340, 342, 344, 348|
|350, 351, 364, 372, 375, 376, 380, 390|
|414, 424, 441, 444, 459, 460, 462, 472|.
		

Crossrefs

Programs

  • Mathematica
    FourAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@Sqrt[n/(Prime@i*Prime@j)]}]; FourAlmostPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[FourAlmostPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[Det[Partition[Array[FourAlmostPrime, n^2], n]], {n, 17}] (* Robert G. Wilson v, May 26 2006 *)

Extensions

More terms from Robert G. Wilson v, May 26 2006

A118780 Semiprime(n)*semiprime(n+3) - semiprime(n+1)*semiprime(n+2), where semiprime(n) is the n-th semiprime.

Original entry on oeis.org

-14, -6, -5, 0, -7, -87, -4, 76, -8, -212, 64, -4, 128, 68, -265, 31, -12, -177, 104, 109, -28, 103, -101, -40, -24, -348, -176, 253, 81, -285, -97, 928, 364, -841, -257, -361, -127, -3, -125, 603, 359, -675, 367, -8, -860, 139, -3, 995, 280, -1276, -167, 629, 145, 443, -365, -579, 171, -569
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2006

Keywords

Comments

Semiprime analog of A117301.
By construction, every entry is also the difference between two 4-almost primes: a(1) = A014613(4)-A014613(5); a(2) = A014613(9)-A014613(11); a(3) = A014613(16)-A014613(18); a(4) = A014613(27)-A014613(27); etc. - R. J. Mathar, Nov 27 2007

Examples

			a(1) = -14 because the determinant of the first block of 4 consecutive semiprimes is:
|4. 6.|
|9. 10|.
a(4) = 0 because the determinant of the 4th block of 4 semiprimes is the first of a presumably infinite number of singular matrices:
|10. 14.|
|15. 21.|.
a(8) = 76, the first positive value in the sequence:
|22. 25.|
|26. 33.|.
		

Crossrefs

Programs

  • Maple
    A001358 := proc(n) option remember ; local a; if n = 1 then 4 ; else for a from A001358(n-1)+1 do if numtheory[bigomega](a)= 2 then RETURN(a) ; fi ; od: fi ; end: A118780 := proc(n) A001358(n)*A001358(n+3)-A001358(n+1)*A001358(n+2) ; end: seq(A118780(n),n=1..58) ; # R. J. Mathar, Nov 27 2007
  • Mathematica
    nmax = 58; spmax = nmax; SP = {};
    While[nmax+3 > Length[SP], spmax += nmax; SP = Select[Range[spmax], PrimeOmega[#] == 2&]];
    a[n_] := SP[[n]] SP[[n+3]] - SP[[n+1]] SP[[n+2]];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Aug 01 2023 *)
    #[[1]]#[[4]]-#[[2]]#[[3]]&/@Partition[Select[Range[300],PrimeOmega[#]==2&],4,1] (* Harvey P. Dale, Sep 08 2024 *)

Formula

a(n) = A001358(n)*A001358(n+3) - A001358(n+1)*A001358(n+2).

Extensions

Better definition from Jens Kruse Andersen, May 03 2008

A118781 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive semiprimes.

Original entry on oeis.org

-196, 272, -251, 149, -423, 909, -408, -452, 958, -123, -112, -460, 84, -271, -187, -162, 63, 7, 101, -483, -133, 205, -860, -46, 339, 1178, 848, 366, 1084, 719, -384, 334, -2736, -984, -1912, 214, 34, 40, -1735, -60, 64, -2263, -3468, 5795, 69, 132, 3007, 256, 2130, 3428
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2006

Keywords

Comments

Semiprime analog of A117330 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive primes. The terminology "continuous" is used to distinguish from "discrete" which would be (in this 3 X 3 semiprime case) block 1: 4, 6, 9, 10, 14, 15, 21, 22, 25; block 2: 26, 33, 34, 35, 38, 39, 46, 49, 51; and so forth.

Examples

			a(1) = -196 because the determinant of the first continuous block of 9 semiprimes is:
| 4. 6. 9.|
|10. 14. 15.|
|21. 22. 25.|.
a(9) = 958 because the determinant of the 9th continuous block of 9 semiprimes is:
|25. 26. 33.|
|34. 35. 38.|
|39. 46. 49.|.
a(50) = 3428 because the determinant of the 50th continuous block of 9 semiprimes is:
|146. 155. 158.|
|159. 161. 166.|
|169. 177. 178.|.
		

Crossrefs

Programs

  • Maple
    A118781 := proc(n)
        local A,i,r,c ;
        A := Matrix(3,3) ;
        i := n ;
        for r from 1 to 3 do
        for c from 1 to 3 do
            A[r,c] := A001358(i) ;
            i := i+1 ;
        end do:
        end do:
        LinearAlgebra[Determinant](A) ;
    end proc: # R. J. Mathar, May 05 2013
  • Mathematica
    Det/@(Partition[#,3]&/@(Partition[Select[Range[200],PrimeOmega[ #] == 2&],9,1])) (* Harvey P. Dale, Nov 29 2015 *)

Formula

a(n) = s(n)*s(n+4)*s(n+8) - s(n)*s(n+5)*s(n+7) - s(n+1)*s(n+3)*s(n+8) + s(n+1)*s(n+5)*s(n+6) + s(n+2)*s(n+3)*s(n+7) - s(n+2)*s(n+4)*s(n+6) where s(n) = A001358(n) is the n-th semiprime.
Showing 1-10 of 14 results. Next