A060435
Number of functions f: {1,2,...,n} -> {1,2,...,n} with even cycles only.
Original entry on oeis.org
1, 0, 1, 6, 57, 680, 9945, 172032, 3438673, 78003648, 1980083025, 55616359040, 1712630427849, 57375166877184, 2077563829893097, 80859304977696000, 3366275257190794785, 149270897223530835968, 7024011523121427204897, 349574012216588890718208
Offset: 0
E.g.f. A(x) = 1 + 0*x + 1*x^2/2! + 6*x^3/3! + 57*x^4/4! + 680*x^5/5! +...
The formula A(x) = 1/sqrt(1 - LambertW(-x)^2 ) is illustrated by:
A(x) = 1/sqrt(1 - (x+ x^2+ 3^2*x^3/3!+ 4^3*x^4/4!+ 5^4*x^5/5! +...)^2).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
-
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[(1/(1 - t^2))^(1/2), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 07 2011 *)
-
{a(n)=local(LambertW=sum(k=0,n,(-x)^(k+1)*(k+1)^k/(k+1)!) +x*O(x^n)); n!*polcoeff(1/sqrt(1-subst(LambertW,x,-x)^2),n)} \\ Paul D. Hanna, Oct 11 2007
A246610
Number of endofunctions on [n] whose cycle lengths are multiples of 3.
Original entry on oeis.org
1, 0, 0, 2, 24, 300, 4480, 78750, 1591296, 36355256, 927244800, 26127386010, 806251494400, 27046291980708, 980094896062464, 38158333538165750, 1588601646620835840, 70427042234715548400, 3312574102411273437184, 164767312911755127462066, 8641342923227371929600000
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+3)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 3)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
CoefficientList[Series[1/(1+LambertW[-x]^3)^(1/3),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246611
Number of endofunctions on [n] whose cycle lengths are multiples of 4.
Original entry on oeis.org
1, 0, 0, 0, 6, 120, 2160, 41160, 866460, 20294064, 526680000, 15036999120, 468848156040, 15859299473160, 578619457031616, 22654279249875000, 947570269816868880, 42174922731482980320, 1990416896317283627520, 99290011292792071612704, 5220362654145754082460000
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+4)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 4)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
-
CoefficientList[Series[1/(1-LambertW[-x]^4)^(1/4),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246612
Number of endofunctions on [n] whose cycle lengths are multiples of 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 24, 720, 17640, 430080, 11022480, 302835456, 8976567600, 287236730880, 9901354268520, 366504424366080, 14515574208519384, 612912858447052800, 27497080096591516320, 1306520704652165775360, 65556843230110158804960, 3464412427539012262035456
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+5)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 5)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
-
CoefficientList[Series[1/(1+LambertW[-x]^5)^(1/5),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246613
Number of endofunctions on [n] whose cycle lengths are multiples of 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 120, 5040, 161280, 4898880, 151200000, 4870182240, 165589522560, 5970883913280, 228632817853440, 9292843409850000, 400385970127503360, 18252778818295082880, 878619947953407528960, 44562094805330883023040, 2376296054962478899200000
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+6)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 6)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
-
CoefficientList[Series[1/(1-LambertW[-x]^6)^(1/6),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246614
Number of endofunctions on [n] whose cycle lengths are multiples of 7.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 720, 40320, 1632960, 60480000, 2213719200, 82771476480, 3211179491520, 130247609057280, 5542874078742000, 247828800444825600, 11643316737494682240, 574455837701776343040, 29734324379435446505280, 1612668074301849600000000
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+7)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 7)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
-
CoefficientList[Series[1/(1+LambertW[-x]^7)^(1/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246615
Number of endofunctions on [n] whose cycle lengths are multiples of 8.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 5040, 362880, 18144000, 804988800, 34488115200, 1482082842240, 65120246231040, 2955402450000000, 139297568464454400, 6837892496270035200, 350034595015623598080, 18692451288585606954240, 1041114148173066240000000
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+8)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 8)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
-
CoefficientList[Series[1/(1-LambertW[-x]^8)^(1/8),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246616
Number of endofunctions on [n] whose cycle lengths are multiples of 9.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 40320, 3628800, 219542400, 11496038400, 570031862400, 27908676956160, 1379187810000000, 69648048665395200, 3619848890071814400, 194428045753727385600, 10817313676715756770560, 624148118196535296000000, 37365232440634029661766400
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+9)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 9)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
-
CoefficientList[Series[1/(1+LambertW[-x]^9)^(1/9),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246617
Number of endofunctions on [n] whose cycle lengths are multiples of 10.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 39916800, 2874009600, 175394419200, 9967384627200, 551675124000000, 30471021291110400, 1703458301210265600, 97213825272736972800, 5693251850259515942400, 343266731083210449715200, 21349233350716392722764800
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+10)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 10)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
-
CoefficientList[Series[1/(1-LambertW[-x]^10)^(1/10),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 01 2014 *)
A246618
Number of endofunctions on [2n] whose cycle lengths are multiples of n.
Original entry on oeis.org
1, 4, 57, 4480, 866460, 302835456, 165589522560, 130247609057280, 139297568464454400, 194428045753727385600, 343266731083210449715200, 747889980460943180326502400, 1971026081420013638259189350400, 6180432779330984921337015828480000
Offset: 0
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0 or i>n, 0, add(b(n-i*j, i+k, k)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= n->add(b(j, n$2)*(2*n)^(2*n-j)*binomial(2*n-1, j-1), j=0..2*n):
seq(a(n), n=0..15);
-
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0 || i > n, 0, Sum[b[n - i*j, i + k, k]*(i - 1)!^j * multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!, {j, 0, n/i}]]]; a[0] = 1; a[n_] := Sum[b[j, n, n]*(2n)^(2n-j)*Binomial[2n-1, j-1], {j, 0, 2n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 26 2017, after Alois P. Heinz *)
Showing 1-10 of 10 results.
Comments