cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A060435 Number of functions f: {1,2,...,n} -> {1,2,...,n} with even cycles only.

Original entry on oeis.org

1, 0, 1, 6, 57, 680, 9945, 172032, 3438673, 78003648, 1980083025, 55616359040, 1712630427849, 57375166877184, 2077563829893097, 80859304977696000, 3366275257190794785, 149270897223530835968, 7024011523121427204897, 349574012216588890718208
Offset: 0

Views

Author

Vladeta Jovovic, Apr 07 2001

Keywords

Comments

E.g.f. equals the square-root of the e.g.f. of A134095. - Paul D. Hanna, Oct 11 2007

Examples

			E.g.f. A(x) = 1 + 0*x + 1*x^2/2! + 6*x^3/3! + 57*x^4/4! + 680*x^5/5! +...
The formula A(x) = 1/sqrt(1 - LambertW(-x)^2 ) is illustrated by:
A(x) = 1/sqrt(1 - (x+ x^2+ 3^2*x^3/3!+ 4^3*x^4/4!+ 5^4*x^5/5! +...)^2).
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Cf. A134095.
Column k=2 of A246609.

Programs

  • Mathematica
    t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[(1/(1 - t^2))^(1/2), {x, 0, 20}], x]  (* Geoffrey Critzer, Dec 07 2011 *)
  • PARI
    {a(n)=local(LambertW=sum(k=0,n,(-x)^(k+1)*(k+1)^k/(k+1)!) +x*O(x^n)); n!*polcoeff(1/sqrt(1-subst(LambertW,x,-x)^2),n)} \\ Paul D. Hanna, Oct 11 2007

Formula

E.g.f.: 1/sqrt(1-(LambertW(-x))^2). a(n)=(n-1)!*Sum_{k=0..floor((n-2)/2)} (k+1)/2^(2*k+1)*binomial(2*k+2, k+1)*n^(n-2-2*k)/(n-2-2*k)!.
A134095(n) = Sum_{k=0..n} C(n,k) * a(n-k) * a(k) with a(0)=1 and a(1)=0 where A134095(n) = Sum_{k=0..n} C(n,k) * (n-k)^k * k^(n-k). - Paul D. Hanna, Oct 11 2007
a(n) ~ n! * 2^(3/4)*Gamma(3/4)*exp(n)/(4*Pi*n^(3/4)) * (1- 5*Pi/ (24*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Sep 24 2013

Extensions

More terms from Alois P. Heinz, Aug 26 2014

A246610 Number of endofunctions on [n] whose cycle lengths are multiples of 3.

Original entry on oeis.org

1, 0, 0, 2, 24, 300, 4480, 78750, 1591296, 36355256, 927244800, 26127386010, 806251494400, 27046291980708, 980094896062464, 38158333538165750, 1588601646620835840, 70427042234715548400, 3312574102411273437184, 164767312911755127462066, 8641342923227371929600000
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=3 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+3)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 3)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/(1+LambertW[-x]^3)^(1/3),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1+LambertW(-x)^3)^(1/3). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ Gamma(5/6) * (n^(n-1/3) / (12^(1/3) * sqrt(Pi))) * (1 - 2^(7/6) * Gamma(1/3)^3 / (9 * Pi^(3/2) * sqrt(n))). - Vaclav Kotesovec, Sep 01 2014

A246611 Number of endofunctions on [n] whose cycle lengths are multiples of 4.

Original entry on oeis.org

1, 0, 0, 0, 6, 120, 2160, 41160, 866460, 20294064, 526680000, 15036999120, 468848156040, 15859299473160, 578619457031616, 22654279249875000, 947570269816868880, 42174922731482980320, 1990416896317283627520, 99290011292792071612704, 5220362654145754082460000
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=4 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+4)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 4)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/(1-LambertW[-x]^4)^(1/4),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1-LambertW(-x)^4)^(1/4). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-3/8) * (sqrt(Pi) / (2^(1/8) * Gamma(1/8))) * (1 - 11 * sqrt(2/n) * Gamma(1/8) / (64 * Gamma(5/8))). - Vaclav Kotesovec, Sep 01 2014

A246612 Number of endofunctions on [n] whose cycle lengths are multiples of 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 24, 720, 17640, 430080, 11022480, 302835456, 8976567600, 287236730880, 9901354268520, 366504424366080, 14515574208519384, 612912858447052800, 27497080096591516320, 1306520704652165775360, 65556843230110158804960, 3464412427539012262035456
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=5 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+5)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 5)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    CoefficientList[Series[1/(1+LambertW[-x]^5)^(1/5),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1+LambertW(-x)^5)^(1/5). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-2/5) * 2^(2/5) * (sqrt(Pi) / (5^(1/5) * Gamma(1/10))) * (1 - 14 * sqrt(2/n) * Gamma(1/10) / (75 * Gamma(3/5))). - Vaclav Kotesovec, Sep 01 2014

A246613 Number of endofunctions on [n] whose cycle lengths are multiples of 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 120, 5040, 161280, 4898880, 151200000, 4870182240, 165589522560, 5970883913280, 228632817853440, 9292843409850000, 400385970127503360, 18252778818295082880, 878619947953407528960, 44562094805330883023040, 2376296054962478899200000
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=6 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+6)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 6)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    CoefficientList[Series[1/(1-LambertW[-x]^6)^(1/6),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1-LambertW(-x)^6)^(1/6). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-5/12) * 2^(1/4) * (sqrt(Pi) / (3^(1/6) * Gamma(1/12))) * (1 - 85 * sqrt(2/n) * Gamma(1/12) / (432 * Gamma(7/12))). - Vaclav Kotesovec, Sep 01 2014

A246614 Number of endofunctions on [n] whose cycle lengths are multiples of 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 720, 40320, 1632960, 60480000, 2213719200, 82771476480, 3211179491520, 130247609057280, 5542874078742000, 247828800444825600, 11643316737494682240, 574455837701776343040, 29734324379435446505280, 1612668074301849600000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=7 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+7)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 7)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    CoefficientList[Series[1/(1+LambertW[-x]^7)^(1/7),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1+LambertW(-x)^7)^(1/7). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-3/7) * 2^(3/7) * (sqrt(Pi) / (7^(1/7) * Gamma(1/14))) * (1 - 10 * sqrt(2/n) * Gamma(1/14) / (49 * Gamma(4/7))). - Vaclav Kotesovec, Sep 01 2014

A246615 Number of endofunctions on [n] whose cycle lengths are multiples of 8.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 5040, 362880, 18144000, 804988800, 34488115200, 1482082842240, 65120246231040, 2955402450000000, 139297568464454400, 6837892496270035200, 350034595015623598080, 18692451288585606954240, 1041114148173066240000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=8 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+8)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 8)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    CoefficientList[Series[1/(1-LambertW[-x]^8)^(1/8),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1-LambertW(-x)^8)^(1/8). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-7/16) * 2^(1/16) * (sqrt(Pi) / Gamma(1/16)) * (1 - 161 * sqrt(2/n) * Gamma(1/16) / (768 * Gamma(9/16))). - Vaclav Kotesovec, Sep 01 2014

A246616 Number of endofunctions on [n] whose cycle lengths are multiples of 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 40320, 3628800, 219542400, 11496038400, 570031862400, 27908676956160, 1379187810000000, 69648048665395200, 3619848890071814400, 194428045753727385600, 10817313676715756770560, 624148118196535296000000, 37365232440634029661766400
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=9 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+9)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 9)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    CoefficientList[Series[1/(1+LambertW[-x]^9)^(1/9),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1+LambertW(-x)^9)^(1/9). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-4/9) * 2^(4/9) * sqrt(Pi) / (3^(2/9) * Gamma(1/18)) * (1 - 52 * sqrt(2/n) * Gamma(1/18) / (243 * Gamma(5/9))). - Vaclav Kotesovec, Sep 01 2014

A246617 Number of endofunctions on [n] whose cycle lengths are multiples of 10.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 39916800, 2874009600, 175394419200, 9967384627200, 551675124000000, 30471021291110400, 1703458301210265600, 97213825272736972800, 5693251850259515942400, 343266731083210449715200, 21349233350716392722764800
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Comments

In general, column k of A246609 is (for k > 1) asymptotic to n^(n-1/2 + 1/(2*k)) * sqrt(2*Pi) / (2^(1/(2*k)) * k^(1/k) * Gamma(1/(2*k))) * (1 - (3*k-1)*(k-1) * sqrt(2/n) * Gamma(1/(2*k)) / (12 * k^2 * Gamma(1/2 + 1/(2*k)))). - Vaclav Kotesovec, Sep 01 2014

Crossrefs

Column k=10 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+10)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 10)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    CoefficientList[Series[1/(1-LambertW[-x]^10)^(1/10),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1-LambertW(-x)^10)^(1/10). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-9/20) * 2^(7/20) * sqrt(Pi) / (5^(1/10) * Gamma(1/20)) * (1 - 87 * sqrt(2/n) * Gamma(1/20) / (400 * Gamma(11/20))). - Vaclav Kotesovec, Sep 01 2014

A246618 Number of endofunctions on [2n] whose cycle lengths are multiples of n.

Original entry on oeis.org

1, 4, 57, 4480, 866460, 302835456, 165589522560, 130247609057280, 139297568464454400, 194428045753727385600, 343266731083210449715200, 747889980460943180326502400, 1971026081420013638259189350400, 6180432779330984921337015828480000
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Cf. A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i=0 or i>n, 0, add(b(n-i*j, i+k, k)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= n->add(b(j, n$2)*(2*n)^(2*n-j)*binomial(2*n-1, j-1), j=0..2*n):
    seq(a(n), n=0..15);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0 || i > n, 0, Sum[b[n - i*j, i + k, k]*(i - 1)!^j * multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!, {j, 0, n/i}]]]; a[0] = 1; a[n_] := Sum[b[j, n, n]*(2n)^(2n-j)*Binomial[2n-1, j-1], {j, 0, 2n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 26 2017, after Alois P. Heinz *)

Formula

a(n) = A246609(2n,n).
a(n) ~ 2^(3*n-1/2) * n^(2*n-1) / exp(n). - Vaclav Kotesovec, Sep 01 2014
Showing 1-10 of 10 results.