cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A144084 T(n,k) is the number of partial bijections of height k (height(alpha) = |Im(alpha)|) of an n-element set.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 72, 96, 24, 1, 25, 200, 600, 600, 120, 1, 36, 450, 2400, 5400, 4320, 720, 1, 49, 882, 7350, 29400, 52920, 35280, 5040, 1, 64, 1568, 18816, 117600, 376320, 564480, 322560, 40320
Offset: 0

Views

Author

Abdullahi Umar, Sep 10 2008, Sep 30 2008

Keywords

Comments

T(n,k) is also the number of elements in the Green's J equivalence classes in the symmetric inverse monoid, I sub n.
T(n,k) is also the number of ways to place k nonattacking rooks on an n X n chessboard. It can be obtained by performing P(n,k) permutations of n-columns over each C(n,k) combination of n-rows for the given k-rooks. The rule is also applicable for unequal (m X n) sized rectangular boards. - Antal Pinter, Nov 12 2014
Rows also give the coefficients of the matching-generating polynomial of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Rows also give the coefficients of the independence polynomial of the n X n rook graph and clique polynomial of the n X n rook complement graph. - Eric W. Weisstein, Jun 13 and Sep 14 2017
T(n,k) is the number of increasing subsequences of length n-k over all permutations of [n]. - Geoffrey Critzer, Jan 08 2023

Examples

			T(3,1) = 9 because there are exactly 9 partial bijections (on a 3-element set) of height 1, namely: (1)->(1), (1)->(2), (1)->(3), (2)->(1), (2)->(2), (2)->(3), (3)->(1), (3)->(2), (3)->(3).
Triangle T(n,k) begins:
  1;
  1,  1;
  1,  4,   2;
  1,  9,  18,    6;
  1, 16,  72,   96,   24;
  1, 25, 200,  600,  600,  120;
  1, 36, 450, 2400, 5400, 4320, 720;
  ...
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995).
  • Vaclav Kotesovec, Non-attacking chess pieces, 6th ed. (2013), p. 216, p. 218.

Crossrefs

T(n,k) = |A021010|. Sum of rows of T(n,k) is A002720. T(n,n) is the order of the symmetric group on an n-element set, n!.

Programs

  • Magma
    /* As triangle */ [[(Binomial(n,k)^2)*Factorial(k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jun 13 2017
    
  • Maple
    T:= (n, k)-> (binomial(n, k)^2)*k!:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 04 2012
  • Mathematica
    Table[Table[Binomial[n, k]^2 k!,{k, 0, n}], {n, 0, 6}] // Flatten (* Geoffrey Critzer, Dec 04 2012 *)
    Table[ CoefficientList[n!*LaguerreL[n, x], x] // Abs // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 18 2013 *)
    CoefficientList[Table[n! x^n LaguerreL[n, -1/x], {n, 0, 8}], x] // Flatten (* Eric W. Weisstein, Apr 24 2017 *)
    CoefficientList[Table[(-x)^n HypergeometricU[-n, 1, -(1/x)], {n, 5}],
      x] // Flatten (* Eric W. Weisstein, Jun 13 2017 *)
  • PARI
    T(n,k) = k! * binomial(n,k)^2 \\ Andrew Howroyd, Feb 13 2018

Formula

T(n,k) = (C(n,k)^2)*k!.
T(n,k) = A007318(n,k) * A008279(n,k). - Antal Pinter, Nov 12 2014
From Peter Bala, Jul 04 2016: (Start)
G.f.: exp(x*t)*I_0(2*sqrt(x)) = 1 + (1 + t)*x/1!^2 + (1 + 4*t + 2*t^2)*x^2/2!^2 + (1 + 9*t + 18*t^2 + 6*t^3)*x^3/3!^2 + ..., where I_0(x) = Sum_{n >= 0} (x/2)^(2*n)/n!^2 is a modified Bessel function of the first kind.
The row polynomials R(n,t) satisfy R(n,t + u) = Sum_{k = 0..n} T(n,k)*t^k*R(n-k,u).
R(n,t) = 1 + Sum_{k = 0..n-1} (-1)^(n-k+1)*n!/k!*binomial(n,k) *t^(n-k)*R(k,t). Cf. A089231. (End)
From Peter Bala, Oct 05 2019: (Start)
E.g.f.: 1/(1 - t*x)*exp(x/(1 - t*x)).
Recurrence for row polynomials: R(n+1,t) = (1 + (2*n+1)*t)R(n,t) - n^2*t^2*R(n-1,t), with R(0,t) = 1 and R(1,t) = 1 + t.
R(n,t) equals the denominator polynomial of the finite continued fraction 1 + n*t/(1 + n*t/(1 + (n-1)*t/(1 + (n-1)*t/(1 + ... + 2*t/(1 + 2*t/(1 + t/(1 + t/(1)))))))). The numerator polynomial is the (n+1)-th row polynomial of A089231. (End)
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/A001044(n) = exp(y*x)*E(x) where E(x) = Sum_{n>=0} x^n/A001044(n). - Geoffrey Critzer, Jan 08 2023
Sum_{k=0..n} k*T(n,k) = A105219(n). - Alois P. Heinz, Jan 08 2023
T(n,k) = Sum_{d=0..2*k} c(k,d)*n^d, where c(k,d) = Sum_{j=max(d-k,0)..k} binomial(k,j)*A008275(k+j,d)/j!. - Eder G. Santos, Jan 23 2025

A206703 Triangular array read by rows. T(n,k) is the number of partial permutations (injective partial functions) of {1,2,...,n} that have exactly k elements in a cycle. The k elements are not necessarily in the same cycle. A fixed point is considered to be in a cycle.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 13, 9, 6, 6, 73, 52, 36, 24, 24, 501, 365, 260, 180, 120, 120, 4051, 3006, 2190, 1560, 1080, 720, 720, 37633, 28357, 21042, 15330, 10920, 7560, 5040, 5040, 394353, 301064, 226856, 168336, 122640, 87360, 60480, 40320, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Feb 11 2012

Keywords

Examples

			     1;
     1,     1;
     3,     2,     2;
    13,     9,     6,     6;
    73,    52,    36,    24,    24;
   501,   365,   260,   180,   120,  120;
  4051,  3006,  2190,  1560,  1080,  720,   720;
  ...
		

References

  • Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
  • Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.

Crossrefs

Columns k = 0..1 give: A000262, A006152.
Main diagonal gives A000142.
Row sums give A002720.
T(2n,n) gives A088026.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add((p-> p+x^j*
          coeff(p, x, 0))(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    nn = 7; a = 1/(1 - x); ay = 1/(1 - y x); f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[a x] ay, {x, 0, nn}], {x, y}]] // Flatten

Formula

E.g.f.: exp(x/(1-x))/(1-y*x).
From Alois P. Heinz, Feb 19 2022: (Start)
Sum_{k=1..n} T(n,k) = A052852.
Sum_{k=0..n} k * T(n,k) = A103194(n).
Sum_{k=0..n} (n-k) * T(n,k) = A105219(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A331725(n). (End)

A152474 Triangle T(n,k) read by rows: Sum_{k=0..binomial(n,2)} T(n,k)*q^k = n!*Sum_{pi} faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1) + 2*e(2) + ... + n*e(n) = n and faq(i,q) = Product_{j=1..i} (q^j-1)/(q-1), i = 1..n.

Original entry on oeis.org

1, 1, 3, 1, 13, 8, 8, 1, 73, 63, 89, 78, 41, 15, 1, 501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1, 4051, 5225, 9734, 13799, 18709, 20441, 20520, 18101, 14831, 10200, 5891, 3199, 1109, 314, 35, 1, 37633, 55656, 112370, 177457, 270746, 352969, 442897
Offset: 0

Views

Author

Vladeta Jovovic, Dec 05 2008

Keywords

Examples

			Triangle T(n,k) begins:
    1;
    1;
    3,   1;
   13,   8,   8,    1;
   73,  63,  89,   78,   41,  15,   1;
  501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1;
  ...
		

Crossrefs

Cf. A000262 (first column), A105219(second column), A137341 (row sums), A152534.
T(n,n) gives A346981.

Programs

  • PARI
    {T(n,k)=local(e_q=sum(j=0,n,x^j/prod(i=1,j,(q^i-1)/(q-1)))+x*O(x^n)); n!*polcoeff(polcoeff(exp(e_q-1),n,x)*prod(j=1,n,(q^j-1)/(q-1)),k,q)} \\ Paul D. Hanna, Dec 15 2008

Formula

Sum_{k=0..binomial(n,2)} T(n,k)*exp(2*Pi*I*k/n) = n!. - Vladeta Jovovic, Dec 05 2008
From Paul D. Hanna, Dec 15 2008: (Start)
E.g.f.: A(x,q) = exp(e_q(x,q) - 1) = Sum_{n>=0} Sum_{k=0..n(n-1)/2} T(n,k)*q^k*x^n/(n!*faq(n,q)) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) and faq(n,q) = Product_{j=1..n} (q^j-1)/(q-1) with faq(0,q)=1.
Sum_{k=0..n(n-1)/2} T(n,k)*(-1)^k = n!*A000110((n+1)/2), where A000110 is the Bell numbers. (End)

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Feb 04 2018

A341200 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} j^k * (n-j)! * binomial(n,j)^2.

Original entry on oeis.org

1, 0, 2, 0, 1, 7, 0, 1, 6, 34, 0, 1, 8, 39, 209, 0, 1, 12, 63, 292, 1546, 0, 1, 20, 117, 544, 2505, 13327, 0, 1, 36, 243, 1168, 5225, 24306, 130922, 0, 1, 68, 549, 2800, 12525, 55656, 263431, 1441729, 0, 1, 132, 1323, 7312, 33425, 145836, 653023, 3154824, 17572114
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2021

Keywords

Examples

			Square array begins:
     1,    0,    0,     0,     0,     0, ...
     2,    1,    1,     1,     1,     1, ...
     7,    6,    8,    12,    20,    36, ...
    34,   39,   63,   117,   243,   549, ...
   209,  292,  544,  1168,  2800,  7312, ...
  1546, 2505, 5225, 12525, 33425, 97125, ...
		

Crossrefs

Columns k=0..4 gives A002720, A103194, A105219, A105218, A341196.
Main diagonal gives A341197.
Cf. A289192.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, j^k] * (n - j)! * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 06 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, j^k*(n-j)!*binomial(n, j)^2);

Formula

About e.g.f. of column k, see A105218 or A105219 comment.

A344054 a(n) = Sum_{k = 0..n} E1(n, k)*k^2, where E1 are the Eulerian numbers A173018.

Original entry on oeis.org

0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, 3792255667200, 65819609856000, 1206547550208000, 23297526540288000, 472708591939584000, 10055994967130112000, 223826984752250880000, 5202760944485744640000, 126075414965721661440000, 3179798058882852126720000, 83346901966165164687360000, 2267221868000212451328000000
Offset: 0

Views

Author

Peter Luschny, May 11 2021

Keywords

Comments

The Eulerian transform of the squares.

Crossrefs

Transforms of the squares: A151881 (StirlingCycle), A033452 (StirlingSet), A105219 (Laguerre), A103194 (Lah), A065096 (SchröderBig), A083411 (Fubini), A141222 (Narayana), A000330 (Units A000012).
Cf. A173018.

Programs

  • Maple
    a := n -> add(combinat[eulerian1](n, k)*k^2, k = 0..n):
    # Recurrence:
    a := proc(n) option remember; if n < 2 then 0 elif n = 2 then 1 else
    ((n-3)*(n-1)*(23*n-44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) fi end:
    seq(a(n), n = 0..29);
  • Mathematica
    a[n_] := Sum[Sum[(-1)^j Binomial[n + 1, j] k^2 (k + 1 - j)^n, {j,0,k}], {k,0,n}]; a[0] := 0; Table[a[n], {n, 0, 25}]
  • SageMath
    def aList(len):
        R. = PowerSeriesRing(QQ, default_prec=len+2)
        f = x^2*(-x^2 + x - 3)/(6*(x - 1)^3)
        return f.egf_to_ogf().list()[:len]
    print(aList(20))

Formula

a(n) = n! * [x^n] x^2*(-x^2 + x - 3)/(6*(x - 1)^3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(n + 1, j)*k^2*(k + 1 - j)^n.
a(n) = ((n - 3)*(n - 1)*(23*n - 44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) for n >= 3.
Showing 1-5 of 5 results.