cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A103194 LAH transform of squares.

Original entry on oeis.org

0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977, 589410910, 9064804551, 149641946796, 2638693215769, 49490245341642, 983607047803815, 20646947498718736, 456392479671188001, 10595402429677269174, 257723100178182605287, 6553958557721713088820
Offset: 0

Views

Author

Vladeta Jovovic, Mar 18 2005

Keywords

Comments

If the e.g.f. of b(n) is E(x) and a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*b(k), then the e.g.f. of a(n) is E(x/(1-x))/(1-x). - Vladeta Jovovic, Apr 16 2005
a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are in a cycle. A fixed point is considered to be in a cycle. a(n) = Sum_{k=0..n} A206703(n,k)*k. - Geoffrey Critzer, Feb 11 2012
a(n) is the total number of elements in all partial permutations (injective partial functions) of {1,2,...,n} that are undefined, i.e., they do not have an image.- Geoffrey Critzer, Feb 09 2022
a(n) is the total length of all increasing subsequences over all n-permutations. Cf. A002720. - Geoffrey Critzer, Feb 09 2022

Crossrefs

Programs

  • Maple
    with(combstruct): SetSeqSetL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Set(Z, card=1)}, labeled]: seq(k*count(SetSeqSetL, size=k), k=0..18); # Zerinvary Lajos, Jun 06 2007
    a := n -> n!*hypergeom([2, 1-n], [1, 1], -1):
    seq(simplify(a(n)),n=0..20); # Peter Luschny, Mar 30 2015
  • Mathematica
    nn = 20; a = 1/(1 - x); ay = 1/(1 - y x); D[Range[0, nn]! CoefficientList[ Series[Exp[a x] ay, {x, 0, nn}], x], y] /. y -> 1  (* Geoffrey Critzer, Feb 11 2012 *)

Formula

a(n) = Sum_{k=0..n} (n!/k!)*binomial(n-1, k-1)*k^2.
E.g.f.: x/(1-x)^2*exp(x/(1-x)).
Recurrence: (n-1)*a(n) - n*(2*n-1)*a(n-1) + n*(n-1)^2*a(n-2) = 0.
a(n) = n*A000262(n). - Vladeta Jovovic, Mar 20 2005
a(n) ~ n! * exp(-1/2 + 2*sqrt(n))*n^(1/4)/(2*sqrt(Pi)). - Vaclav Kotesovec, Aug 13 2013
a(n) = n!*hypergeom([2, 1-n], [1, 1], -1). - Peter Luschny, Mar 30 2015
a(n) = Sum_{k=1..n} k*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jun 17 2025

A088026 Number of "sets of even lists" for even n, cf. A000262.

Original entry on oeis.org

1, 2, 36, 1560, 122640, 15150240, 2695049280, 650948538240, 204637027795200, 81098021561356800, 39516616693678924800, 23204736106751520921600, 16152539421202464036556800, 13145716394493318293898240000, 12363004898960780220305909760000
Offset: 0

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add((i->
          b(n-i)*binomial(n-1, i-1)*i!)(2*j), j=1..n/2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    Table[n!*SeriesCoefficient[E^(x^2/(1-x^2)),{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    x='x+O('x^66); /* (half) that many terms */
    v=Vec(serlaplace(exp(x^2/(1-x^2))));
    vector(#v\2,n, v[2*n-1])
    /* Joerg Arndt, Jul 29 2012 */

Formula

E.g.f.: exp(x^2/(1-x^2)) (even powers only, see PARI code).
E.g.f.: exp(x^2/(1-x^2)) = 4/(2-(x^2/(1-x^2))*G(0))-1 where G(k) = 1 - x^4/(x^4 + 4*(1-x^2)^2*(2*k+1)*(2*k+3)/G(k+1) ) (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
a(n) ~ 2^(2*n) * n^(2*n-1/4) * exp(sqrt(4*n)-2*n-1/2). - Vaclav Kotesovec, Feb 25 2014
D-finite with recurrence a(n) -2*(2*n-1)^2*a(n-1) +4*(n-1)*(n-2)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 01 2022
a(n) = A206703(2n,n). - Alois P. Heinz, Feb 19 2022

Extensions

More terms from Joerg Arndt, Jul 29 2012.

A105219 a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*k^2.

Original entry on oeis.org

0, 1, 8, 63, 544, 5225, 55656, 653023, 8379008, 116780049, 1757211400, 28394129951, 490371506208, 9013522796473, 175679564492264, 3618800515187775, 78547755741723136, 1791704327280481313, 42846080320725932808, 1071798626271975328639, 27989931083161219661600
Offset: 0

Views

Author

Miklos Kristof, Apr 13 2005

Keywords

Comments

If the e.g.f. of n^2 is E(x) and a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*k^2, then the e.g.f. of a(n) is E(x/(1-x))/(1-x). (Thanks to Vladeta Jovovic for help.)
a(n) is the total number of edges in all matchings of the labeled complete bipartite graph K_n,n. Cf. A144084 for other interpretations. - Geoffrey Critzer, Nov 17 2021

Examples

			b(n) = 0,1,4,9,16,25,36,49,64,...
a(3) = C(3,0)^2*3!*b(0) + C(3,1)^2*2!*b(1) + C(3,2)^2*1!*b(2) + C(3,3)^2*0!*b(3) = 1*6*0 + 9*2*1 + 9*1*4 + 1*1*9 = 0 + 18 + 36 + 9 = 63.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do b[n]:=n^2 od: seq(add(binomial(n,k)^2*(n-k)!*b[k], k=0..n), n=0..30);
    seq(`if`(n=0,0,simplify(n!*LaguerreL(n-1,2,-1))),n=0..17); # Peter Luschny, Apr 11 2015
  • Mathematica
    CoefficientList[Series[(x/(1-x)^2+x^2/(1-x)^3)*E^(x/(1-x)), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

E.g.f.: (x/(1-x)^2+x^2/(1-x)^3)*exp(x/(1-x)).
a(n) = n^2*A002720(n-1) for n>=1 [Riordan]. - N. J. A. Sloane, Jan 10 2018
a(n) = (n+1)!*(2*L(n,-1)-L(n+1,-1)) where L(n,x) is the n-th Laguerre polynomial. - Peter Luschny, Jan 19 2012
Recurrence: a(n) = 2*(n+2)*a(n-1) - (n^2+4*n-4)*a(n-2) + 2*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+5/4)/sqrt(2)*(1-17/(48*sqrt(n))). - Vaclav Kotesovec, Oct 17 2012
a(n) = n!*L(n-1,2,-1) for n>=1 where L(n,b,x) is the n-th generalized Laguerre polynomial. - Peter Luschny, Apr 11 2015
a(n) = Sum_{k=0...n} A144084(n,k)*k. - Geoffrey Critzer, Nov 17 2021
a(n) = Sum_{k=0..n} (n-k) * A206703(n,k). - Alois P. Heinz, Feb 19 2022
a(n) = Sum_{k=1..n} k*k!*binomial(n,k)^2. - Ridouane Oudra, Jun 15 2025

A260705 Least integer k such that the set of the divisors of k contains exactly n pairs of numbers having the following property: for each pair of two distinct divisors, the reversal of one is equal to the other.

Original entry on oeis.org

84, 168, 336, 1008, 3024, 5544, 11088, 16632, 33264, 49896, 99792, 182952, 365904, 249480, 498960, 1097712, 2162160, 3359664, 1846152, 3027024, 5538456, 6054048, 9081072, 9230760, 14270256, 19891872, 20307672, 25197480, 33297264, 45405360, 55135080, 71351280
Offset: 1

Views

Author

Michel Lagneau, Nov 17 2015

Keywords

Comments

It seems that a(n)==0 (mod 84).
Additional terms with n > 75: a(77) = 15455984544, a(80) = 27719972280, a(83) = 22439977560, a(84) = 18479981520, a(86) = 28559971440. - Lars Blomberg, Jan 04 2016

Examples

			a(4)=1008 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008} contains 4 pairs (12, 21), (24, 42), (36, 63) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24), 63 = reversal(36) and 84 = reversal(48).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^8:
    for n from 1 to 16 do:
    ii:=0:
    for m from 1 to nn while(ii=0) do:
    it:=0:d:=divisors(m):d0:=nops(d):
      for i from 1 to d0 do:
       dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd):
       s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
        for k from i+1 to d0 do:
         if s=d[k]
         then
         it:=it+1:
         else fi:
        od:
        od:
        if it=n
        then
        ii:=1:printf("%d %d \n",n,m):
        else fi:
    od:
    od:
  • PARI
    nbr(vd) = {nb = 0; for (j=1, #vd, da = vd[j]; rda = eval(concat(Vecrev(Str(da)))); rrda = eval(concat(Vecrev(Str(rda)))); if ((da != rda) && vecsearch(vd,rda) && (da == rrda), nb++);); nb/2;}
    a(n) = {k=1; while (nbrp(divisors(k)) != n, k++); k;} \\ Michel Marcus, Dec 27 2015

Extensions

a(14)-a(15) corrected by Lars Blomberg, Dec 27 2015
a(7), a(19), a(20) corrected and a(21)-a(32) added by Lars Blomberg, Jan 04 2016

A331725 E.g.f.: exp(x/(1 - x)) / (1 + x).

Original entry on oeis.org

1, 0, 3, 4, 57, 216, 2755, 18348, 247569, 2368432, 35256771, 436248660, 7235178313, 108919083144, 2010150360387, 35421547781116, 723689454172065, 14543895730321248, 326843345169621379, 7354350135365751972, 180610925178770615001, 4488323611011676811320
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2020

Keywords

Crossrefs

Programs

  • Maple
    A331725 := proc(n)
        add((-1)^k*binomial(n,k)*k!*A000262(n-k),k=0..n) ;
    end proc:
    seq(A331725(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[x/(1 - x)]/(1 + x), {x, 0, nmax}], x] Range[0, nmax]!
    A000262[n_] := If[n == 0, 1, n! Sum[Binomial[n - 1, k]/(k + 1)!, {k, 0, n - 1}]]; a[n_] := Sum[(-1)^k Binomial[n, k] k! A000262[n - k], {k, 0, n}]; Table[a[n], {n, 0, 21}]
    a[n_] := (-1)^n n! (1 - Sum[(-1)^j*LaguerreL[j, 1, -1]/(j+1), {j,0,n-1}]);
    Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 20 2022 *)
  • PARI
    seq(n)={Vec(serlaplace(exp(x/(1 - x) + O(x*x^n)) / (1 + x)))} \\ Andrew Howroyd, Jan 25 2020
    
  • SageMath
    def gen_a():
        F, L, S, N = 1, 1, 1, 1
        while True:
            yield F * S
            L = gen_laguerre(N - 1, 1, -1) / N
            S += L if F < 0 else -L
            F *= -N; N += 1
    a = gen_a(); print([next(a) for  in range(21)]) # _Peter Luschny, Feb 20 2022

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * k! * A000262(n-k).
a(n) ~ n^(n - 1/4) / (2^(3/2) * exp(1/2 - 2*sqrt(n) + n)). - Vaclav Kotesovec, Jan 26 2020
D-finite with recurrence a(n) +(-n+1)*a(n-1) -(n-1)*(n+1)*a(n-2) +(n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Aug 20 2021
a(n) = Sum_{k=0..n} (-1)^k * A206703(n,k). - Alois P. Heinz, Feb 19 2022
a(n) = (-1)^n*n!*(1 - Sum_{j=0..n-1}((-1)^j*LaguerreL(j, 1, -1)/(j + 1))). - Peter Luschny, Feb 20 2022
Showing 1-5 of 5 results.