A103194
LAH transform of squares.
Original entry on oeis.org
0, 1, 6, 39, 292, 2505, 24306, 263431, 3154824, 41368977, 589410910, 9064804551, 149641946796, 2638693215769, 49490245341642, 983607047803815, 20646947498718736, 456392479671188001, 10595402429677269174, 257723100178182605287, 6553958557721713088820
Offset: 0
-
with(combstruct): SetSeqSetL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Set(Z, card=1)}, labeled]: seq(k*count(SetSeqSetL, size=k), k=0..18); # Zerinvary Lajos, Jun 06 2007
a := n -> n!*hypergeom([2, 1-n], [1, 1], -1):
seq(simplify(a(n)),n=0..20); # Peter Luschny, Mar 30 2015
-
nn = 20; a = 1/(1 - x); ay = 1/(1 - y x); D[Range[0, nn]! CoefficientList[ Series[Exp[a x] ay, {x, 0, nn}], x], y] /. y -> 1 (* Geoffrey Critzer, Feb 11 2012 *)
A088026
Number of "sets of even lists" for even n, cf. A000262.
Original entry on oeis.org
1, 2, 36, 1560, 122640, 15150240, 2695049280, 650948538240, 204637027795200, 81098021561356800, 39516616693678924800, 23204736106751520921600, 16152539421202464036556800, 13145716394493318293898240000, 12363004898960780220305909760000
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add((i->
b(n-i)*binomial(n-1, i-1)*i!)(2*j), j=1..n/2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 01 2022
-
Table[n!*SeriesCoefficient[E^(x^2/(1-x^2)),{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Feb 25 2014 *)
-
x='x+O('x^66); /* (half) that many terms */
v=Vec(serlaplace(exp(x^2/(1-x^2))));
vector(#v\2,n, v[2*n-1])
/* Joerg Arndt, Jul 29 2012 */
A105219
a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*k^2.
Original entry on oeis.org
0, 1, 8, 63, 544, 5225, 55656, 653023, 8379008, 116780049, 1757211400, 28394129951, 490371506208, 9013522796473, 175679564492264, 3618800515187775, 78547755741723136, 1791704327280481313, 42846080320725932808, 1071798626271975328639, 27989931083161219661600
Offset: 0
b(n) = 0,1,4,9,16,25,36,49,64,...
a(3) = C(3,0)^2*3!*b(0) + C(3,1)^2*2!*b(1) + C(3,2)^2*1!*b(2) + C(3,3)^2*0!*b(3) = 1*6*0 + 9*2*1 + 9*1*4 + 1*1*9 = 0 + 18 + 36 + 9 = 63.
-
for n from 0 to 30 do b[n]:=n^2 od: seq(add(binomial(n,k)^2*(n-k)!*b[k], k=0..n), n=0..30);
seq(`if`(n=0,0,simplify(n!*LaguerreL(n-1,2,-1))),n=0..17); # Peter Luschny, Apr 11 2015
-
CoefficientList[Series[(x/(1-x)^2+x^2/(1-x)^3)*E^(x/(1-x)), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
A260705
Least integer k such that the set of the divisors of k contains exactly n pairs of numbers having the following property: for each pair of two distinct divisors, the reversal of one is equal to the other.
Original entry on oeis.org
84, 168, 336, 1008, 3024, 5544, 11088, 16632, 33264, 49896, 99792, 182952, 365904, 249480, 498960, 1097712, 2162160, 3359664, 1846152, 3027024, 5538456, 6054048, 9081072, 9230760, 14270256, 19891872, 20307672, 25197480, 33297264, 45405360, 55135080, 71351280
Offset: 1
a(4)=1008 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008} contains 4 pairs (12, 21), (24, 42), (36, 63) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24), 63 = reversal(36) and 84 = reversal(48).
-
with(numtheory):nn:=10^8:
for n from 1 to 16 do:
ii:=0:
for m from 1 to nn while(ii=0) do:
it:=0:d:=divisors(m):d0:=nops(d):
for i from 1 to d0 do:
dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd):
s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
for k from i+1 to d0 do:
if s=d[k]
then
it:=it+1:
else fi:
od:
od:
if it=n
then
ii:=1:printf("%d %d \n",n,m):
else fi:
od:
od:
-
nbr(vd) = {nb = 0; for (j=1, #vd, da = vd[j]; rda = eval(concat(Vecrev(Str(da)))); rrda = eval(concat(Vecrev(Str(rda)))); if ((da != rda) && vecsearch(vd,rda) && (da == rrda), nb++);); nb/2;}
a(n) = {k=1; while (nbrp(divisors(k)) != n, k++); k;} \\ Michel Marcus, Dec 27 2015
a(7), a(19), a(20) corrected and a(21)-a(32) added by
Lars Blomberg, Jan 04 2016
A331725
E.g.f.: exp(x/(1 - x)) / (1 + x).
Original entry on oeis.org
1, 0, 3, 4, 57, 216, 2755, 18348, 247569, 2368432, 35256771, 436248660, 7235178313, 108919083144, 2010150360387, 35421547781116, 723689454172065, 14543895730321248, 326843345169621379, 7354350135365751972, 180610925178770615001, 4488323611011676811320
Offset: 0
-
A331725 := proc(n)
add((-1)^k*binomial(n,k)*k!*A000262(n-k),k=0..n) ;
end proc:
seq(A331725(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
-
nmax = 21; CoefficientList[Series[Exp[x/(1 - x)]/(1 + x), {x, 0, nmax}], x] Range[0, nmax]!
A000262[n_] := If[n == 0, 1, n! Sum[Binomial[n - 1, k]/(k + 1)!, {k, 0, n - 1}]]; a[n_] := Sum[(-1)^k Binomial[n, k] k! A000262[n - k], {k, 0, n}]; Table[a[n], {n, 0, 21}]
a[n_] := (-1)^n n! (1 - Sum[(-1)^j*LaguerreL[j, 1, -1]/(j+1), {j,0,n-1}]);
Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 20 2022 *)
-
seq(n)={Vec(serlaplace(exp(x/(1 - x) + O(x*x^n)) / (1 + x)))} \\ Andrew Howroyd, Jan 25 2020
-
def gen_a():
F, L, S, N = 1, 1, 1, 1
while True:
yield F * S
L = gen_laguerre(N - 1, 1, -1) / N
S += L if F < 0 else -L
F *= -N; N += 1
a = gen_a(); print([next(a) for in range(21)]) # _Peter Luschny, Feb 20 2022
Showing 1-5 of 5 results.
Comments