cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A105278 Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 36, 12, 1, 120, 240, 120, 20, 1, 720, 1800, 1200, 300, 30, 1, 5040, 15120, 12600, 4200, 630, 42, 1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1, 3628800, 16329600
Offset: 1

Views

Author

Miklos Kristof, Apr 25 2005

Keywords

Comments

T(n,k) is the number of partially ordered sets (posets) on n elements that consist entirely of k chains. For example, T(4, 3)=12 since there are exactly 12 posets on {a,b,c,d} that consist entirely of 3 chains. Letting ab denote a<=b and using a slash "/" to separate chains, the 12 posets can be given by a/b/cd, a/b/dc, a/c/bd, a/c/db, a/d/bc, a/d/cb, b/c/ad, b/c/da, b/d/ac, b/d/ca, c/d/ab and c/d/ba, where the listing of the chains is arbitrary (e.g., a/b/cd = a/cd/b =...cd/b/a). - Dennis P. Walsh, Feb 22 2007
Also the matrix product |S1|.S2 of Stirling numbers of both kinds.
This Lah triangle is a lower triangular matrix of the Jabotinsky type. See the column e.g.f. and the D. E. Knuth reference given in A008297. - Wolfdieter Lang, Jun 29 2007
The infinitesimal matrix generator of this matrix is given in A132710. See A111596 for an interpretation in terms of circular binary words and generalized factorials. - Tom Copeland, Nov 22 2007
Three combinatorial interpretations: T(n,k) is (1) the number of ways to split [n] = {1,...,n} into a collection of k nonempty lists ("partitions into sets of lists"), (2) the number of ways to split [n] into an ordered collection of n+1-k nonempty sets that are noncrossing ("partitions into lists of noncrossing sets"), (3) the number of Dyck n-paths with n+1-k peaks labeled 1,2,...,n+1-k in some order. - David Callan, Jul 25 2008
Given matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = D where D(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - Tom Copeland, Aug 21 2008
An e.g.f. for the row polynomials of A(n,k) = T(n,k)*a(n-k) is exp[a(.)* D_x * x^2] exp(x*t) = exp(x*t) exp[(.)!*Lag(.,-x*t,1)*a(.)*x], umbrally, where [(.)! Lag(.,x,1)]^n = n! Lag(n,x,1) is a normalized Laguerre polynomial of order 1. - Tom Copeland, Aug 29 2008
Triangle of coefficients from the Bell polynomial of the second kind for f = 1/(1-x). B(n,k){x1,x2,x3,...} = B(n,k){1/(1-x)^2,...,(j-1)!/(1-x)^j,...} = T(n,k)/(1-x)^(n+k). - Vladimir Kruchinin, Mar 04 2011
The triangle, with the row and column offset taken as 0, is the generalized Riordan array (exp(x), x) with respect to the sequence n!*(n+1)! as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!^2 is A021009 unsigned). - Peter Bala, Aug 15 2013
For a relation to loop integrals in QCD, see p. 33 of Gopakumar and Gross and Blaizot and Nowak. - Tom Copeland, Jan 18 2016
Also the Bell transform of (n+1)!. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Also the number of k-dimensional flats of the n-dimensional Shi arrangement. - Shuhei Tsujie, Apr 26 2019
The numbers T(n,k) appear as coefficients when expanding the rising factorials (x)^k = x(x+1)...(x+k-1) in the basis of falling factorials (x)k = x(x-1)...(x-k+1). Specifically, (x)^n = Sum{k=1..n} T(n,k) (x)k. - _Jeremy L. Martin, Apr 21 2021

Examples

			T(1,1) = C(1,1)*0!/0! = 1,
T(2,1) = C(2,1)*1!/0! = 2,
T(2,2) = C(2,2)*1!/1! = 1,
T(3,1) = C(3,1)*2!/0! = 6,
T(3,2) = C(3,2)*2!/1! = 6,
T(3,3) = C(3,3)*2!/2! = 1,
Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.
B(n,k) =
   1/(1-x)^2;
   2/(1-x)^3,  1/(1-x)^4;
   6/(1-x)^4,  6/(1-x)^5,  1/(1-x)^6;
  24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;
The triangle T(n,k) begins:
  n\k      1       2       3      4      5     6    7  8  9 ...
  1:       1
  2:       2       1
  3:       6       6       1
  4:      24      36      12      1
  5:     120     240     120     20      1
  6:     720    1800    1200    300     30     1
  7:    5040   15120   12600   4200    630    42    1
  8:   40320  141120  141120  58800  11760  1176   56  1
  9:  362880 1451520 1693440 846720 211680 28224 2016 72  1
  ...
Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - _Wolfdieter Lang_, Feb 01 2013
From _Peter Bala_, Feb 24 2025: (Start)
The array factorizes as an infinite product (read from right to left):
  /  1                \        /1             \^m /1           \^m /1           \^m
  |  2    1            |      | 0   1          |  |0  1         |  |1  1         |
  |  6    6   1        | = ...| 0   0   1      |  |0  1  1      |  |0  2  1      |
  | 24   36  12   1    |      | 0   0   1  1   |  |0  0  2  1   |  |0  0  3  1   |
  |120  240 120  20   1|      | 0   0   0  2  1|  |0  0  0  3  1|  |0  0  0  4  1|
  |...                 |      |...             |  |...          |  |...          |
where m = 2. Cf. A008277 (m = 1), A035342 (m = 3), A035469 (m = 4), A049029 (m = 5) A049385 (m = 6), A092082 (m = 7), A132056 (m = 8), A223511 - A223522 (m = 9 through 20), A001497 (m = -1), A004747 (m = -2), A000369 (m = -3), A011801 (m = -4), A013988 (m = -5). (End)
		

Crossrefs

Triangle of Lah numbers (A008297) unsigned.
Cf. A111596 (signed triangle with extra n=0 row and m=0 column).
Cf. A130561 (for a natural refinement).
Cf. A094638 (for differential operator representation).
Cf. A248045 (central terms), A002868 (row maxima).
Cf, A059110.
Cf. A089231 (triangle with mirrored rows).
Cf. A271703 (triangle with extra n=0 row and m=0 column).

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Binomial(n,k)*Factorial(n-1)/Factorial(k-1)))); # Muniru A Asiru, Jul 25 2018
  • Haskell
    a105278 n k = a105278_tabl !! (n-1) !! (k-1)
    a105278_row n = a105278_tabl !! (n-1)
    a105278_tabl = [1] : f [1] 2 where
       f xs i = ys : f ys (i + 1) where
         ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Sep 30 2014, Mar 18 2013
    
  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    The triangle: for n from 1 to 13 do seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n) od;
    the sequence: seq(seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n),n=1..13);
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ...) as column 0.
    BellMatrix(n -> (n+1)!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 11 2011 *)
    nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* Jan Mangaldan, Mar 15 2013 *)
    rows = 10;
    t = Range[rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    T[n_, n_] := 1; T[n_, k_] /;0Oliver Seipel, Dec 06 2024 *)
  • Perl
    use ntheory ":all"; say join ", ", map { my $n=$; map { stirling($n,$,3) } 1..$n; } 1..9; # Dana Jacobsen, Mar 16 2017
    

Formula

T(n,k) = Sum_{m=n..k} |S1(n,m)|*S2(m,k), k>=n>=1, with Stirling triangles S2(n,m):=A048993 and S1(n,m):=A048994.
T(n,k) = C(n,k)*(n-1)!/(k-1)!.
Sum_{k=1..n} T(n,k) = A000262(n).
n*Sum_{k=1..n} T(n,k) = A103194(n) = Sum_{k=1..n} T(n,k)*k^2.
E.g.f. column k: (x^(k-1)/(1-x)^(k+1))/(k-1)!, k>=1.
Recurrence from Sheffer (here Jabotinsky) a-sequence [1,1,0,...] (see the W. Lang link under A006232): T(n,k)=(n/k)*T(n-1,m-1) + n*T(n-1,m). - Wolfdieter Lang, Jun 29 2007
The e.g.f. is, umbrally, exp[(.)!* L(.,-t,1)*x] = exp[t*x/(1-x)]/(1-x)^2 where L(n,t,1) = Sum_{k=0..n} T(n+1,k+1)*(-t)^k = Sum_{k=0..n} binomial(n+1,k+1)* (-t)^k / k! is the associated Laguerre polynomial of order 1. - Tom Copeland, Nov 17 2007
For this Lah triangle, the n-th row polynomial is given umbrally by
n! C(B.(x)+1+n,n) = (-1)^n C(-B.(x)-2,n), where C(x,n)=x!/(n!(x-n)!),
the binomial coefficient, and B_n(x)= exp(-x)(xd/dx)^n exp(x), the n-th Bell / Touchard / exponential polynomial (cf. A008277). E.g.,
2! C(-B.(-x)-2,2) = (-B.(x)-2)(-B.(x)-3) = B_2(x) + 5*B_1(x) + 6 = 6 + 6x + x^2.
n! C(B.(x)+1+n,n) = n! e^(-x) Sum_{j>=0} C(j+1+n,n)x^j/j! is a corresponding Dobinski relation. See the Copeland link for the relation to inverse Mellin transform. - Tom Copeland, Nov 21 2011
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A008277 (D = (1+x)*d/dx), A035342 (D = (1+x)^3*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). - Peter Bala, Nov 25 2011
T(n,k) = Sum_{i=k..n} A130534(n-1,i-1)*A008277(i,k). - Reinhard Zumkeller, Mar 18 2013
Let E(x) = Sum_{n >= 0} x^n/(n!*(n+1)!). Then a generating function is exp(t)*E(x*t) = 1 + (2 + x)*t + (6 + 6*x + x^2)*t^2/(2!*3!) + (24 + 36*x + 12*x^2 + x^3)*t^3/(3!*4!) + ... . - Peter Bala, Aug 15 2013
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of A059110; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 23 2018
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates the Narayana matrix A001263. - Tom Copeland, Sep 23 2020
T(n,k) = A089231(n,n-k). - Ron L.J. van den Burg, Dec 12 2021
T(n,k) = T(n-1,k-1) + (n+k-1)*T(n-1,k). - Bérénice Delcroix-Oger, Jun 25 2025

Extensions

Stirling comments and e.g.f.s from Wolfdieter Lang, Apr 11 2007

A206703 Triangular array read by rows. T(n,k) is the number of partial permutations (injective partial functions) of {1,2,...,n} that have exactly k elements in a cycle. The k elements are not necessarily in the same cycle. A fixed point is considered to be in a cycle.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 13, 9, 6, 6, 73, 52, 36, 24, 24, 501, 365, 260, 180, 120, 120, 4051, 3006, 2190, 1560, 1080, 720, 720, 37633, 28357, 21042, 15330, 10920, 7560, 5040, 5040, 394353, 301064, 226856, 168336, 122640, 87360, 60480, 40320, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Feb 11 2012

Keywords

Examples

			     1;
     1,     1;
     3,     2,     2;
    13,     9,     6,     6;
    73,    52,    36,    24,    24;
   501,   365,   260,   180,   120,  120;
  4051,  3006,  2190,  1560,  1080,  720,   720;
  ...
		

References

  • Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
  • Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.

Crossrefs

Columns k = 0..1 give: A000262, A006152.
Main diagonal gives A000142.
Row sums give A002720.
T(2n,n) gives A088026.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add((p-> p+x^j*
          coeff(p, x, 0))(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    nn = 7; a = 1/(1 - x); ay = 1/(1 - y x); f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[a x] ay, {x, 0, nn}], {x, y}]] // Flatten

Formula

E.g.f.: exp(x/(1-x))/(1-y*x).
From Alois P. Heinz, Feb 19 2022: (Start)
Sum_{k=1..n} T(n,k) = A052852.
Sum_{k=0..n} k * T(n,k) = A103194(n).
Sum_{k=0..n} (n-k) * T(n,k) = A105219(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A331725(n). (End)

A317277 a(n) = Sum_{k=0..n} binomial(n-1,k-1)*k^n*n!/k!; a(0) = 1.

Original entry on oeis.org

1, 1, 6, 81, 1828, 60565, 2734926, 160109005, 11724156648, 1045312448841, 111114793839610, 13845807451708441, 1994597720747571468, 328351264019737949341, 61162428777982281583302, 12782305566531823350524805, 2975150384583838798131401296, 766253903501365584725344992529
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2018

Keywords

Comments

a(n) is the n-th term of the Lah transform of the n-th powers.

Crossrefs

Programs

  • Magma
    [1]cat[(&+[Binomial(n-1,j-1)*Binomial(n,j)*Factorial(n-j)*j^n: j in [0..n]]): n in [1..30]]; // G. C. Greubel, Mar 09 2021
    
  • Maple
    A317277:= n-> `if`(n=0,1, add(binomial(n-1,j-1)*binomial(n,j)*(n-j)!*j^n, j=0..n)); seq(A317277(n), n=0..30); # G. C. Greubel, Mar 09 2021
  • Mathematica
    Join[{1}, Table[Sum[Binomial[n - 1, k - 1] k^n n!/k!, {k, n}], {n, 17}]]
    Join[{1}, Table[n! SeriesCoefficient[Sum[k^n (x/(1 - x))^k/k!, {k, n}], {x, 0, n}], {n, 17}]]
  • PARI
    a(n) = if (n==0, 1, sum(k=0, n, binomial(n-1, k-1)*k^n*n!/k!)); \\ Michel Marcus, Mar 10 2021; corrected Jun 15 2022
  • Sage
    [1]+[sum(binomial(n-1,j-1)*binomial(n,j)*factorial(n-j)*j^n for j in (0..n)) for n in (1..30)] # G. C. Greubel, Mar 09 2021
    

Formula

a(n) = n! * [x^n] Sum_{k>=0} k^n*(x/(1 - x))^k/k!.

Extensions

Name edited by Michel Marcus, Jun 15 2022

A341200 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} j^k * (n-j)! * binomial(n,j)^2.

Original entry on oeis.org

1, 0, 2, 0, 1, 7, 0, 1, 6, 34, 0, 1, 8, 39, 209, 0, 1, 12, 63, 292, 1546, 0, 1, 20, 117, 544, 2505, 13327, 0, 1, 36, 243, 1168, 5225, 24306, 130922, 0, 1, 68, 549, 2800, 12525, 55656, 263431, 1441729, 0, 1, 132, 1323, 7312, 33425, 145836, 653023, 3154824, 17572114
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2021

Keywords

Examples

			Square array begins:
     1,    0,    0,     0,     0,     0, ...
     2,    1,    1,     1,     1,     1, ...
     7,    6,    8,    12,    20,    36, ...
    34,   39,   63,   117,   243,   549, ...
   209,  292,  544,  1168,  2800,  7312, ...
  1546, 2505, 5225, 12525, 33425, 97125, ...
		

Crossrefs

Columns k=0..4 gives A002720, A103194, A105219, A105218, A341196.
Main diagonal gives A341197.
Cf. A289192.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, j^k] * (n - j)! * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 06 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, j^k*(n-j)!*binomial(n, j)^2);

Formula

About e.g.f. of column k, see A105218 or A105219 comment.

A256467 Inverse Lah transform of the squares.

Original entry on oeis.org

0, 1, 2, -9, 28, -55, -234, 5047, -59464, 620433, -6210710, 60312791, -552386988, 4291343641, -14786103682, -469083221865, 17904311480176, -458594711604703, 10473023418660306, -228670491372982217, 4899169866194557580, -104056906653521654679, 2196053393686810460902
Offset: 0

Views

Author

Peter Luschny, Mar 30 2015

Keywords

Crossrefs

Cf. A103194.

Programs

  • Maple
    a := n -> `if`(n=0,0, -(-1)^n*n!*hypergeom([2, 1-n], [1, 1], 1)):
    seq(simplify(a(n)), n=0..22);

Formula

a(n) = Sum_{k=0..n}(-1)^(n-k)*(n-k)!*C(n,n-k)*C(n-1,n-k)*k^2.
a(n) = (-1)^(n+1)*n!*hypergeom([2, 1-n], [1, 1], 1) for n>=1.
D-finite with recurrence +(-n+1)*a(n) +(-2*n^2+3*n+4)*a(n-1) -(n-1)*(n-2)*(n+1)*a(n-2)=0. - R. J. Mathar, Jul 27 2022

A300159 Number of ways of converting one set of lists containing n elements to another set of lists containing n elements by removing the last element from one of the lists and either appending it to an existing list or treating it as a new list.

Original entry on oeis.org

0, 0, 4, 30, 240, 2140, 21300, 235074, 2853760, 37819800, 543445380, 8416452550, 139753069104, 2476581106740, 46648575724660, 930581784937770, 19597766647728000, 434455097953799344, 10112163333554834820, 246539064280189932270, 6282671083849941925360
Offset: 0

Views

Author

Mitchell Keith Bloch, Feb 26 2018

Keywords

Comments

All terms are even.

Examples

			a(0) = 0 since for 0 lists, 0 conversions are possible.
a(1) = 0 since for the 1 set of 1 list of length 1, there exist no possible conversions.
a(2) = 4 since for the 2 sets of 1 list of length 2, there exists only 1 conversion, and for the 1 set of 2 lists of length 1, there exist 2 conversions.
a(3) = 30 since for the 6 sets of 1 list of length 3, there exists 1 conversion, for the 6 sets of 1 list of length 2 and 1 list of length 1, there exist 3 conversions, and for the 1 set of 3 lists of length 1, there exists 6 conversions.
		

Crossrefs

Extends A000262 to count conversions in addition to sets of lists.

Programs

  • Magma
    l:= func< n,b | Evaluate(LaguerrePolynomial(n,1), b) >;
    [0,0,4]cat[Factorial(n)*( 2*l(n-2,-1) - l(n-3,-1) ): n in [3..30]]; // G. C. Greubel, Mar 09 2021
  • Maple
    b:= proc(n, t, c) option remember; `if`(n=0, t^2-c, add(j!*
          binomial(n-1, j-1)*b(n-j, t+1, c+`if`(j=1, 1, 0)), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 05 2018
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [0$2, 4, 30, 240, 2140][n+1],
         (n*(2*n^2-13*n+16)*a(n-1)-n*(n-1)*(n-3)*(n-4)*a(n-2))/((n-2)*(n-5)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 05 2018
  • Mathematica
    (* First program *)
    b[n_, t_, c_]:= b[n,t,c]= If[n==0, t^2 -c, Sum[j! Binomial[n-1, j-1]b[n-j,t+1,c + If[j==1, 1, 0]], {j,n}]];
    a[n_]:= b[n, 0, 0];
    a/@ Range[0, 25] (* Jean-François Alcover, Nov 24 2020, after Alois P. Heinz *)
    (* Second program *)
    Table[If[n<2, 0, n!*(2*LaguerreL[n-2,1,-1] -LaguerreL[n-3,1,-1])], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [0,0,4]+[factorial(n)*(2*gen_laguerre(n-2,1,-1) - gen_laguerre(n-3,0,-1)) for n in (3..30)] # G. C. Greubel, Mar 09 2021
    

Formula

a(n) = Sum_{i=1..p(n)} (n!/(Product_{j=1..n} k(i,j)!) * ((Sum_{j=1..n} k(i,j))^2 - k(i,1))) (where p(n) is the number of partitions A000041 and k(i,j) is the number of partitions of size j in partitioning i).
From Alois P. Heinz, Mar 05 2018: (Start)
E.g.f.: x^2*(2-x)*exp(x/(1-x))/(x-1)^2.
a(n) = (n*(2*n^2-13*n+16)*a(n-1) - n*(n-1)*(n-3)*(n-4)*a(n-2)) / ((n-2)*(n-5)) for n>5. (End)
a(n) ~ n^(n + 3/4) * exp(2*sqrt(n) - n - 1/2) / sqrt(2). - Vaclav Kotesovec, Jun 02 2018
a(n) = n!*( 2*LaguerreL(n-2,1,-1) - LaguerreL(n-3,1,-1) ) for n > 1, with a(0) = a(1) = 0. - G. C. Greubel, Mar 09 2021

Extensions

More terms from Mitchell Keith Bloch, Mar 05 2018

A323770 Expansion of e.g.f. x*(2 - x)*exp(x/(1 - x))/(2*(1 - x)^2).

Original entry on oeis.org

0, 1, 5, 30, 214, 1775, 16791, 178360, 2101100, 27172269, 382566025, 5823044546, 95253119490, 1666020561595, 31019392831259, 612430207741500, 12778091116288216, 280893425932078745, 6487870112636577165, 157066777096248548134, 3976727555939887035950, 105087648979005066820551
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2019

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 0 else (&+[Binomial(n-1,k)*Binomial(k+2,2)* Factorial(n)/Factorial(k+1): k in [0..n-1]]): n in [0..20]]; // G. C. Greubel, Mar 05 2021
  • Maple
    seq(n!*coeff(series(x*(2-x)*exp(x/(1-x))/(2*(1-x)^2),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 29 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[x (2 - x) Exp[x/(1 - x)]/(2 (1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n - 1, k - 1] Binomial[k + 1, 2] n!/k!, {k, 0, n}], {n, 0, 21}]
  • Sage
    [0]+[sum(binomial(n-1,k)*binomial(k+2,2)*factorial(n)/factorial(k+1) for k in (0..n-1)) for n in [1..20]] # G. C. Greubel, Mar 05 2021
    

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1)*A000217(k)*n!/k!.
a(n) ~ n^(n + 3/4) / (2^(3/2) * exp(n - 2*sqrt(n) + 1/2)). - Vaclav Kotesovec, Jan 27 2019
a(n) = n!*Hypergeometric2F2([1-n, 3], [1, 2], -1). - G. C. Greubel, Mar 05 2021

A344054 a(n) = Sum_{k = 0..n} E1(n, k)*k^2, where E1 are the Eulerian numbers A173018.

Original entry on oeis.org

0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, 3792255667200, 65819609856000, 1206547550208000, 23297526540288000, 472708591939584000, 10055994967130112000, 223826984752250880000, 5202760944485744640000, 126075414965721661440000, 3179798058882852126720000, 83346901966165164687360000, 2267221868000212451328000000
Offset: 0

Views

Author

Peter Luschny, May 11 2021

Keywords

Comments

The Eulerian transform of the squares.

Crossrefs

Transforms of the squares: A151881 (StirlingCycle), A033452 (StirlingSet), A105219 (Laguerre), A103194 (Lah), A065096 (SchröderBig), A083411 (Fubini), A141222 (Narayana), A000330 (Units A000012).
Cf. A173018.

Programs

  • Maple
    a := n -> add(combinat[eulerian1](n, k)*k^2, k = 0..n):
    # Recurrence:
    a := proc(n) option remember; if n < 2 then 0 elif n = 2 then 1 else
    ((n-3)*(n-1)*(23*n-44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) fi end:
    seq(a(n), n = 0..29);
  • Mathematica
    a[n_] := Sum[Sum[(-1)^j Binomial[n + 1, j] k^2 (k + 1 - j)^n, {j,0,k}], {k,0,n}]; a[0] := 0; Table[a[n], {n, 0, 25}]
  • SageMath
    def aList(len):
        R. = PowerSeriesRing(QQ, default_prec=len+2)
        f = x^2*(-x^2 + x - 3)/(6*(x - 1)^3)
        return f.egf_to_ogf().list()[:len]
    print(aList(20))

Formula

a(n) = n! * [x^n] x^2*(-x^2 + x - 3)/(6*(x - 1)^3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(n + 1, j)*k^2*(k + 1 - j)^n.
a(n) = ((n - 3)*(n - 1)*(23*n - 44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) for n >= 3.
Showing 1-8 of 8 results.