cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Shuhei Tsujie

Shuhei Tsujie's wiki page.

Shuhei Tsujie has authored 3 sequences.

A308440 Matrix product of triangle of Stirling numbers of second kind A008277 and square of unsigned Lah triangle A105278.

Original entry on oeis.org

1, 5, 1, 37, 15, 1, 365, 223, 30, 1, 4501, 3675, 745, 50, 1, 66605, 68071, 18450, 1865, 75, 1, 1149877, 1411515, 479101, 64750, 3920, 105, 1, 22687565, 32512663, 13260030, 2244501, 181650, 7322, 140, 1, 503589781, 825175275, 393017185, 79948050, 8103711, 436590, 12558, 180, 1
Offset: 1

Author

Shuhei Tsujie, May 27 2019

Keywords

Comments

Also the number of k-dimensional flats of the extended Catalan arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -2 <= d <= 2).

Examples

			Triangle begins:
     1;
     5,    1;
    37,   15,   1;
   365,  223,  30,  1;
  4501, 3675, 745, 50, 1;
  ...
		

Crossrefs

Cf. A008277, A105278, A050351 (first column), A109092 (row sums).

Formula

E.g.f.: exp((exp(x)-1)*y/(3-2exp(x))).

A308282 The fifth power of the unsigned Lah triangular matrix A105278.

Original entry on oeis.org

1, 10, 1, 150, 30, 1, 3000, 900, 60, 1, 75000, 30000, 3000, 100, 1, 2250000, 1125000, 150000, 7500, 150, 1, 78750000, 47250000, 7875000, 525000, 15750, 210, 1, 3150000000, 2205000000, 441000000, 36750000, 1470000, 29400, 280, 1, 141750000000, 113400000000, 26460000000, 2646000000, 132300000, 3528000, 50400, 360, 1
Offset: 1

Author

Shuhei Tsujie, May 18 2019

Keywords

Comments

Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -4 <= d <= 5).

Examples

			Triangle begins:
      1;
     10,     1;
    150,    30,    1;
   3000,   900,   60,   1;
  75000, 30000, 3000, 100, 1;
  ...
		

Crossrefs

Cf. A105278.

Programs

  • Mathematica
    Table[5^(n - k) * Binomial[n - 1, k - 1] * n! / k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 13 2019 *)

Formula

E.g.f.: exp(x*y/(1-5*x)).
T(n,k) = 5^(n-k)*binomial(n-1, k-1)*n!/k! = 5^(n-k)*A105278.

A308281 The third power of the unsigned Lah triangular matrix A105278.

Original entry on oeis.org

1, 6, 1, 54, 18, 1, 648, 324, 36, 1, 9720, 6480, 1080, 60, 1, 174960, 145800, 32400, 2700, 90, 1, 3674160, 3674160, 1020600, 113400, 5670, 126, 1, 88179840, 102876480, 34292160, 4762800, 317520, 10584, 168, 1, 2380855680, 3174474240, 1234517760, 205752960, 17146080, 762048, 18144, 216, 1
Offset: 1

Author

Shuhei Tsujie, May 18 2019

Keywords

Comments

Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -2 <= d <= 3).

Examples

			Triangle begins:
     1;
     6,    1;
    54,   18,    1;
   648,  324,   36,  1;
  9720, 6480, 1080, 60, 1;
  ...
		

Crossrefs

Cf. A105278.

Programs

  • Mathematica
    Table[3^(n - k) * Binomial[n - 1, k - 1] * n! / k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 13 2019 *)

Formula

E.g.f.: exp(x*y/(1-3*x)).
T(n,k) = 3^(n-k)*binomial(n-1, k-1)*n!/k! = 3^(n-k)*A105278.