A308440 Matrix product of triangle of Stirling numbers of second kind A008277 and square of unsigned Lah triangle A105278.
1, 5, 1, 37, 15, 1, 365, 223, 30, 1, 4501, 3675, 745, 50, 1, 66605, 68071, 18450, 1865, 75, 1, 1149877, 1411515, 479101, 64750, 3920, 105, 1, 22687565, 32512663, 13260030, 2244501, 181650, 7322, 140, 1, 503589781, 825175275, 393017185, 79948050, 8103711, 436590, 12558, 180, 1
Offset: 1
Examples
Triangle begins: 1; 5, 1; 37, 15, 1; 365, 223, 30, 1; 4501, 3675, 745, 50, 1; ...
Links
- Robert Gill, The number of elements in a generalized partition semilattice, Discrete mathematics 186.1-3 (1998): 125-134.
- N. Nakashima and S. Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
Formula
E.g.f.: exp((exp(x)-1)*y/(3-2exp(x))).
Comments