cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346981 a(n) = A152474(n,n).

Original entry on oeis.org

1, 0, 0, 1, 41, 842, 20520, 477479, 12482191, 344597977, 10325683780, 329996493091, 11307950123833, 411428962250775, 15890609817681079, 648195555340597125, 27864181100124570327, 1258096888119566215689, 59531788666265363070393, 2944807922604446013781174
Offset: 0

Views

Author

Alois P. Heinz, Aug 09 2021

Keywords

Crossrefs

Main diagonal of A152474.
Cf. A346980.

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1, f(n-1)*(q^n-1)/(q-1)) end:
    b:= proc(n, i) option remember; simplify(`if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)/f(i)^j/j!, j=0..n/i))))
        end:
    a:= n-> coeff(simplify(n!*f(n)*b(n$2)), q, n):
    seq(a(n), n=0..19);
  • Mathematica
    f[n_] := f[n] = If[n < 2, 1, f[n - 1]*(q^n - 1)/(q - 1)];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1]/f[i]^j/j!, {j, 0, n/i}]]];
    a[n_] := SeriesCoefficient[n!*f[n]*b[n, n], {q, 0, n}];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 07 2022, after Alois P. Heinz *)

Formula

a(n) = A152474(n,n).

A152534 Triangle T(n,k) read by rows with q-e.g.f.: 1/Product_{k>0} (1-x^k/faq(k,q)).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 3, 1, 5, 7, 11, 11, 8, 4, 1, 7, 13, 25, 36, 44, 42, 36, 24, 13, 5, 1, 11, 24, 54, 93, 142, 184, 215, 222, 208, 172, 126, 81, 44, 19, 6, 1, 15, 39, 98, 195, 344, 532, 753, 964, 1150, 1264, 1294, 1226, 1082, 880, 661, 451, 278, 151, 70, 26, 7, 1
Offset: 0

Views

Author

Vladeta Jovovic, Dec 06 2008

Keywords

Examples

			Triangle begins:
  1;
  1;
  2,  1;
  3,  3,  3,  1;
  5,  7, 11, 11,  8,  4,  1;
  7, 13, 25, 36, 44, 42, 36, 24, 13,  5,  1;
  ...
		

Crossrefs

Cf. A005651 (row sums), A000041 (first column), A076276 (second column), A152474, A152536.
T(n,n) gives A346980.

Programs

  • Maple
    multinomial2q := proc(n::integer,k::integer,nparts::integer)
            local lpar ,res, constrp;
            res := [] ;
            if n< 0 or nparts <= 0 then
                    ;
            elif nparts = 1 then
                    if n = k then
                            return [[n]] ;
                    end if;
            else
                    for lpar from 0 do
                            if lpar*nparts > n or lpar > k then
                                    break;
                            end if;
                            for constrp in procname(n-nparts*lpar,k-lpar,nparts-1) do
                                    if nops(constrp) > 0 then
                                            res := [op(res),[op(constrp),lpar]] ;
                                    end if;
                            end do:
                    end do:
            end if ;
            return res ;
    end proc:
    multinomial2 := proc(n::integer,k::integer)
            local res,constrp ;
            res := [] ;
            for constrp in multinomial2q(n,k,n) do
                    if nops(constrp) > 0 then
                            res := [op(res),constrp] ;
                    end if ;
            end do:
            res ;
    end proc:
    faq := proc(i,q)
            mul((q^j-1)/(q-1),j=1..i) ;
    end proc;
    A152534 := proc(n,k)
            pi := [] ;
            for sp from 0 to n do
                    pi := [op(pi),op(multinomial2(n,sp))] ;
            end do;
            tqk := 0 ;
            for p in pi do
                    faqe :=1 ;
                    for i from 1 to nops(p) do
                            faqe := faqe* faq(i,q)^op(i,p) ;
                    end do:
                    tqk := tqk+faq(n,q)/faqe ;
            end do;
            tqk ;
            coeftayl(tqk,q=0,k) ;
    end proc:
    for n from 1 to 8 do
            for k from 0 to binomial(n,2) do
                    printf("%d,",A152534(n,k)) ;
            end do;
            printf("\n") ;
    end do: # R. J. Mathar, Sep 27 2011
    # second Maple program:
    f:= proc(n) option remember; `if`(n<2, 1, f(n-1)*(q^n-1)/(q-1)) end:
    b:= proc(n, i) option remember; simplify(`if`(n=0 or i=1, 1,
          add(b(n-i*j, i-1)/f(i)^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, q, i), i=0..degree(p)))(simplify(f(n)*b(n$2))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Aug 09 2021
  • Mathematica
    f[n_] := f[n] = If[n < 2, 1, f[n - 1]*(q^n - 1)/(q - 1)];
    b[n_, i_] := b[n, i] = Simplify[If[n == 0 || i == 1, 1,
         Sum[b[n - i*j, i - 1]/f[i]^j, {j, 0, n/i}]]];
    T[n_] := CoefficientList[Simplify[f[n]*b[n, n]], q];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)

Formula

Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} faq(n,q)/Product_{i=1..n} faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1) + 2*e(2) + ... + n*e(n) = n and faq(i,q) = Product_{j=1..i} (q^j-1)/(q-1), i = 1..n.
Sum_{k=0..binomial(n,2)} T(n,k)*exp(2*Pi*I*k/n) = 1.
Sum_{k=0..binomial(n,2)} (-1)^k*T(n,k) = A152536(n). - Alois P. Heinz, Aug 09 2021

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Aug 09 2021
Showing 1-2 of 2 results.