cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152474 Triangle T(n,k) read by rows: Sum_{k=0..binomial(n,2)} T(n,k)*q^k = n!*Sum_{pi} faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1) + 2*e(2) + ... + n*e(n) = n and faq(i,q) = Product_{j=1..i} (q^j-1)/(q-1), i = 1..n.

Original entry on oeis.org

1, 1, 3, 1, 13, 8, 8, 1, 73, 63, 89, 78, 41, 15, 1, 501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1, 4051, 5225, 9734, 13799, 18709, 20441, 20520, 18101, 14831, 10200, 5891, 3199, 1109, 314, 35, 1, 37633, 55656, 112370, 177457, 270746, 352969, 442897
Offset: 0

Views

Author

Vladeta Jovovic, Dec 05 2008

Keywords

Examples

			Triangle T(n,k) begins:
    1;
    1;
    3,   1;
   13,   8,   8,    1;
   73,  63,  89,   78,   41,  15,   1;
  501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1;
  ...
		

Crossrefs

Cf. A000262 (first column), A105219(second column), A137341 (row sums), A152534.
T(n,n) gives A346981.

Programs

  • PARI
    {T(n,k)=local(e_q=sum(j=0,n,x^j/prod(i=1,j,(q^i-1)/(q-1)))+x*O(x^n)); n!*polcoeff(polcoeff(exp(e_q-1),n,x)*prod(j=1,n,(q^j-1)/(q-1)),k,q)} \\ Paul D. Hanna, Dec 15 2008

Formula

Sum_{k=0..binomial(n,2)} T(n,k)*exp(2*Pi*I*k/n) = n!. - Vladeta Jovovic, Dec 05 2008
From Paul D. Hanna, Dec 15 2008: (Start)
E.g.f.: A(x,q) = exp(e_q(x,q) - 1) = Sum_{n>=0} Sum_{k=0..n(n-1)/2} T(n,k)*q^k*x^n/(n!*faq(n,q)) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) and faq(n,q) = Product_{j=1..n} (q^j-1)/(q-1) with faq(0,q)=1.
Sum_{k=0..n(n-1)/2} T(n,k)*(-1)^k = n!*A000110((n+1)/2), where A000110 is the Bell numbers. (End)

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Feb 04 2018

A346980 a(n) = A152534(n,n).

Original entry on oeis.org

1, 0, 0, 1, 8, 42, 215, 964, 4336, 18490, 78920, 327422, 1361450, 5561651, 22748172, 92064605, 372730314, 1498785098, 6028277742, 24137078144, 96650940881, 385889337069, 1540641044744, 6139148609668, 24462365837156, 97350374411004, 387401219371335
Offset: 0

Views

Author

Alois P. Heinz, Aug 09 2021

Keywords

Crossrefs

Main diagonal of A152534.
Cf. A346981.

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1, f(n-1)*(q^n-1)/(q-1)) end:
    b:= proc(n, i) option remember; simplify(`if`(n=0 or i=1, 1,
          add(b(n-i*j, i-1)/f(i)^j, j=0..n/i)))
        end:
    a:= n-> coeff(simplify(f(n)*b(n$2)), q, n):
    seq(a(n), n=0..26);
  • Mathematica
    f[n_] := f[n] = If[n < 2, 1, f[n - 1]*(q^n - 1)/(q - 1)];
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
         Sum[b[n - i*j, i - 1]/f[i]^j, {j, 0, n/i}]];
    a[n_] := SeriesCoefficient[f[n]*b[n, n], {q, 0, n}];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Apr 07 2022, after Alois P. Heinz *)

Formula

a(n) = A152534(n,n).
Showing 1-2 of 2 results.