cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jani Melik

Jani Melik's wiki page.

Jani Melik has authored 151 sequences. Here are the ten most recent ones:

A337704 Pythagorean primes that are not congruent numbers.

Original entry on oeis.org

17, 73, 89, 97, 113, 193, 233, 241, 281, 337, 401, 409, 433, 449, 521, 569, 577, 593, 601, 617, 641, 673, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1289, 1297, 1361, 1409, 1433, 1481, 1489, 1553, 1601, 1609, 1657, 1697, 1721, 1753
Offset: 1

Author

Jani Melik, Sep 16 2020

Keywords

Examples

			17 is a Pythagorean prime and is not congruent because it is not the area of a right triangle with rational sides. So 17 is a term.
		

Crossrefs

Intersection of A002144 and A165564.

A269430 Decimal expansion of (1 + Pi)/2.

Original entry on oeis.org

2, 0, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3, 3, 9
Offset: 1

Author

Jani Melik, Feb 26 2016

Keywords

Examples

			2.0707963267948966192313216916397514420985846996875529...
		

Programs

  • PARI
    (1 + Pi)/2 \\ Altug Alkan, Apr 07 2016
  • Sage
    N((1+pi)/2, digits=110)
    

Formula

Equals A096444 + 1 or A019669 + 1/2.
Equals Sum_{k>=0} 2^k/binomial(2*k+2,k). - Amiram Eldar, Jun 30 2020

A258619 Decimal expansion of Sum_{k>=0} (1/A055209(k)).

Original entry on oeis.org

2, 2, 5, 6, 9, 5, 6, 5, 0, 1, 6, 0, 8, 8, 5, 1, 4, 9, 5, 0, 2, 8, 4, 5, 7, 6, 3, 7, 0, 7, 7, 6, 5, 4, 8, 5, 1, 5, 6, 7, 6, 6, 3, 5, 1, 4, 3, 7, 5, 5, 7, 5, 9, 2, 4, 9, 8, 8, 4, 6, 7, 5, 4, 0, 5, 5, 8, 2, 8, 8, 8, 2, 8, 4, 3, 1, 7, 8, 8, 7, 2, 9, 6, 3, 7, 4, 3, 3, 2, 8, 5, 7, 3, 7, 9, 5, 5, 4, 4, 9, 7, 2, 4, 3, 6
Offset: 1

Author

Jani Melik, Jun 06 2015

Keywords

Examples

			2.2569565016088514950284576370776548515676635143755759249....
		

Crossrefs

Cf. A055209.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); b:=[1] cat [(&*[(Factorial(k))^2: k in [1..n]]): n in [1..60]];  (&+[1.0/b[k]: k in [1..50]]); // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    RealDigits[Sum[1/BarnesG[k + 2]^2, {k, 0, 80}], 10, 100][[1]] (* G. C. Greubel, Nov 28 2018 *)
  • PARI
    default(realprecision, 100); sum(n=0,50, 1.0/prod(i=0, n, i!)^2) \\ G. C. Greubel, Nov 28 2018
  • Sage
    def A055209(n) :
       return prod(factorial(i)^(2) for i in (0..n))
    N(sum(1/A055209(n) for n in (0..12)), digits=105)
    

Extensions

Name corrected by Amiram Eldar, Nov 17 2020

A258621 Decimal expansion of sum(1/A030450).

Original entry on oeis.org

2, 2, 5, 6, 9, 4, 7, 4, 5, 8, 5, 2, 6, 5, 9, 7, 9, 5, 5, 4, 6, 2, 7, 3, 6, 7, 2, 4, 4, 4, 2, 3, 4, 2, 2, 1, 0, 5, 5, 9, 2, 3, 6, 5, 0, 8, 8, 9, 3, 6, 9, 5, 9, 5, 3, 3, 4, 6, 0, 0, 4, 9, 6, 0, 9, 2, 6, 7, 5, 4, 9, 2, 8, 1, 7, 5, 2, 2, 0, 0, 6, 7, 7, 6, 1, 4, 8, 9, 6, 2, 1, 3, 3, 1, 7, 7, 7, 7, 7, 7, 2, 8, 5, 6, 4, 6
Offset: 1

Author

Jani Melik, Jun 06 2015

Keywords

Examples

			2.2569474585265979554627367244423422105592365088936959533....
		

Crossrefs

Cf. A030450.

Programs

  • C
    #include 
    #include 
    #define dBIT   512
    #define dLIST  n, t, u
    int main (void) {
    mpfr_t dLIST;
    mpfr_rnd_t trnd;
    unsigned int i;
    trnd = MPFR_RNDU;
    mpfr_inits2 (dBIT, dLIST, (mpfr_ptr) 0);
    mpfr_set_d (n, 1.0, trnd);
    mpfr_set_d (t, 1.0, trnd);
    for (i = 1; i <= 9; i++) {
        mpfr_mul_ui (t, t, i, trnd);
        mpfr_mul (t, t, t, trnd);
        mpfr_set_d (u, 1.0, trnd);
        mpfr_div (u, u, t, trnd);
        mpfr_add (n, n, u, trnd);
    }
    mpfr_printf ("%.106Rg", n);
    mpfr_clears (dLIST, (mpfr_ptr) 0);
    return 0;
    }
  • Sage
    def A030450(n) :
       return prod((n-i+1)^(2^i) for i in (1..n))
    N(sum(1/A030450(n) for n in (0..9)), digits=106)
    

A244623 Odd prime powers that are not primes.

Original entry on oeis.org

1, 9, 25, 27, 49, 81, 121, 125, 169, 243, 289, 343, 361, 529, 625, 729, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14641, 15625, 16129, 16807, 17161, 18769, 19321, 19683
Offset: 1

Author

Jani Melik, Jul 02 2014

Keywords

Comments

Intersection of A061345 and A014076.
A014076 set minus A061346.

Crossrefs

Intersection of A005408 and A025475.
Cf. A061345 (odd prime powers), A061346 (odd neither prime nor prime power), A062739 (odd powerful), A075109 (perfect powers), A136141.

Programs

  • Mathematica
    Join[{1},Select[Range[1,20001,2],PrimePowerQ[#]&&(!PrimeQ[#])&]] (* Harvey P. Dale, Dec 11 2018 *)
  • PARI
    isok(p) = ((p%2) && !isprime(p) && isprimepower(p)) || (p==1); \\ Michel Marcus, Jul 06 2021
  • Sage
    def isA244623(n) :
       return(n % 2 == 1 and is_prime_power(n) == 1 and is_prime(n) == 0)
    [n for n in (1..20000) if isA244623(n)]
    

Formula

a(n) = A079290(n) at least in the range n=3..94, and perhaps beyond. - R. J. Mathar, Aug 20 2014
Sum_{n>=1} 1/a(n) = 1/2 + Sum_{p prime} 1/(p*(p-1)) = 1/2 + A136141. - Amiram Eldar, Dec 21 2020

A242459 Maximal differences of A029707.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 20, 24, 27, 29, 42, 54, 72, 75, 103, 128, 131, 151, 153, 162, 164, 181, 204, 208, 209, 211, 237, 265, 285, 286, 326, 335, 340, 356, 368, 392, 409, 432, 439, 441, 444, 446
Offset: 1

Author

Jani Melik, May 15 2014

Keywords

Crossrefs

Programs

  • Mathematica
    nextLesserTwinPrime[p_Integer] := Block[{q = p + 2}, While[ NextPrime@ q - q > 2, q = NextPrime@ q]; q]; p = 2; q = 3; px = 1; qx = 2; mxd = 0; tpx = 0; lst = {}; While[p <
    5090000001, d = qx - px; If[ d > mxd, mxd = d; AppendTo[ lst, d]; Print@ d]; p = q; px = qx; q = nextLesserTwinPrime@ q; qx = PrimePi@ q; tpx++]; lst (* Robert G. Wilson v, May 21 2014 *)
  • Sage
    def A242459_list(n) :
       a = [ 1 ]
       st = 3
       for i in (4..n) :
          if (nth_prime(i+1)-nth_prime(i) == 2) :
             if i-st > a[len(a)-1] :
                a.append(i-st)
             st = i
       return(a)
    A242459_list(10^(5))

Formula

a(n) = primepi(next(A054691(n-1))) - primepi(A054691(n-1)) + 1 for n >= 2, where primepi = A000720 and next(k) is the least lesser of twin primes that is larger than k. - Amiram Eldar, May 19 2024

Extensions

a(20)-a(28) from Robert G. Wilson v, May 21 2014
a(29)-a(42) from Amiram Eldar, May 19 2024

A237704 Numbers n for which the fundamental solution of Pell's equation x^2 - n*y^2 = 1 has both x and y prime.

Original entry on oeis.org

2, 6, 12, 30, 32, 40, 42, 72, 90, 132, 152, 192, 210, 240, 312, 342, 408, 420, 462, 480, 552, 560, 592, 672, 702, 792, 870, 880, 888, 912, 930, 1122, 1152, 1260, 1272, 1320, 1332, 1560, 1584, 1722, 1752, 1792, 1980, 2352, 2520, 2550, 2652, 2712, 2862, 2952, 2970, 3192, 3560, 3640, 4032
Offset: 1

Author

Jani Melik, Feb 11 2014

Keywords

Examples

			Pell's equation x^2 - 2*y^2 = 1 and its fundamental solution is (x,y) = (3,2) which are both primes, so a(1) = 2.
(x,y) = (5,2) satisfies x^2 - 6*y^2 = 1, so a(2) = 6.
(x,y) = (7,2) satisfies x^2 - 12*y^2 = 1, so a(3) = 12.
Pell's equation x^2 - 2088*y^2 = 1 and (x,y) = (19603, 429), 19603 is prime, 429 = 3 * 11 * 13 is not, so 2088 is not included.
Pell's equation x^2 - 2000*y^2 = 1 and (x,y) = (930249, 20801), 930249 = 3^2 * 41 * 2521 and 20801 = 11 * 31 * 61 are not primes, so 2000 is not included.
		

Crossrefs

Extensions

420 inserted into the sequence by Colin Barker, Feb 12 2014

A236250 Period of the n-th convergent to the continued fraction expansion of Pi.

Original entry on oeis.org

1, 6, 13, 112, 51, 24, 15088, 12284, 88460, 1204, 459, 31824, 93210, 1864254, 531648, 456036, 8299090, 28574910, 1813560, 32552820, 33166008, 133585180, 2503410, 214098720, 3183870690, 7411133309730, 4852769490690, 2294509753536, 175964053944, 3336533898768
Offset: 1

Author

Jani Melik, Jan 21 2014

Keywords

Examples

			The 2nd convergent is 22/7 = 3.142857 142857 ..., whose period is 6, so a(2) = 6.
The 3rd convergent is 333/106 = 3.1 4150943396226 4150943396226 ..., whose period is 13, so a(3) = 13.
		

Crossrefs

Programs

  • Sage
    st_clenov = 30
    def A236250(n) :
       vu = continued_fraction_list(pi, nterms=st_clenov);
       p = []
       for i in (0..n) :
          p.append(convergents(vu)[i].period())
       return(p)
    A236250(st_clenov-1);

Formula

a(n) = A007732(A002486(n+2)). - Michel Marcus, Jan 21 2014

A217458 Decimal expansion of 2^(Pi*sqrt(2)).

Original entry on oeis.org

2, 1, 7, 4, 9, 0, 8, 7, 0, 5, 4, 3, 7, 7, 4, 5, 8, 3, 3, 4, 0, 9, 9, 2, 0, 8, 2, 6, 6, 0, 1, 1, 3, 9, 5, 2, 3, 3, 8, 5, 8, 8, 4, 0, 8, 8, 9, 7, 4, 1, 8, 4, 2, 6, 7, 5, 9, 7, 7, 6, 7, 1, 9, 8, 0, 3, 8, 8, 3, 5, 0, 6, 9, 8, 2, 6, 2, 0, 5, 4, 6, 1, 0, 2, 1, 2, 7, 5, 6, 1, 7, 6, 4, 7, 3, 7, 9, 0, 0, 8
Offset: 2

Author

Jani Melik, Oct 03 2012

Keywords

Examples

			21.7490870543774583340992082660113952338588408897418426759...
		

Crossrefs

Cf. A063448 (Pi * sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2^(Pi(R)*Sqrt(2)); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[2^(Pi*Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Oct 05 2018 *)
  • Maxima
    fpprec : 100; ev(bfloat(2^(%pi*sqrt(2)))); /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    default(realprecision, 100); 2^(Pi*sqrt(2)) \\ G. C. Greubel, Oct 05 2018
    
  • Sage
    2^(pi*sqrt(2)).n(digits=100)
    

A217459 Decimal expansion of 2^Pi.

Original entry on oeis.org

8, 8, 2, 4, 9, 7, 7, 8, 2, 7, 0, 7, 6, 2, 8, 7, 6, 2, 3, 8, 5, 6, 4, 2, 9, 6, 0, 4, 2, 0, 8, 0, 0, 1, 5, 8, 1, 7, 0, 4, 4, 1, 0, 8, 1, 5, 2, 7, 1, 4, 8, 4, 9, 2, 6, 6, 6, 8, 9, 5, 9, 8, 6, 5, 0, 5, 5, 3, 7, 0, 0, 8, 7, 0, 6, 9, 5, 2, 3, 5, 0, 4, 3, 0, 5, 7, 1, 2, 8, 3, 7, 8, 7, 4, 8, 0, 4, 7, 9, 2
Offset: 1

Author

Jani Melik, Oct 03 2012

Keywords

Examples

			8.8249778270762876238564296042080015817044108152714849266....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2^Pi, 10, 100][[1]] (* Amiram Eldar, Nov 24 2020 *)
  • Maxima
    fpprec : 100; ev(bfloat(2^(%pi)));  /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    default(realprecision,2000);2^Pi \\ Anders Hellström, Nov 11 2015
  • Sage
    2^(pi).n(digits=100)
    

Formula

Equals exp(A086054). - Amiram Eldar, Nov 24 2020