cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A260629 Decimal expansion of 3^Pi.

Original entry on oeis.org

3, 1, 5, 4, 4, 2, 8, 0, 7, 0, 0, 1, 9, 7, 5, 4, 3, 9, 6, 0, 5, 4, 6, 3, 0, 3, 1, 1, 7, 4, 0, 5, 7, 0, 7, 8, 9, 0, 5, 5, 1, 2, 5, 4, 7, 9, 8, 2, 8, 1, 3, 8, 4, 6, 6, 9, 3, 9, 9, 8, 3, 1, 3, 8, 8, 0, 3, 3, 0, 4, 0, 3, 3, 2, 2, 3, 6, 6, 8, 7, 3, 3, 9, 4, 9, 3, 4, 9, 3, 0, 7, 7, 8, 6, 9, 3, 0, 8, 7, 8
Offset: 2

Views

Author

Li GAN, Nov 11 2015

Keywords

Examples

			31.54428070019754396054630311740570789055125479828...
		

Crossrefs

Cf. A217459 (2^Pi).

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100* 3^pi))); // Vincenzo Librandi, Dec 01 2015
  • Mathematica
    First@ RealDigits@ N[3^Pi, 120] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    3^Pi \\ Michel Marcus, Nov 11 2015
    
  • PARI
    { default(realprecision, 100); x=(3^Pi)/10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 29 2015
    

Extensions

More terms from Altug Alkan, Nov 11 2015

A260634 Decimal expansion of 4^Pi.

Original entry on oeis.org

7, 7, 8, 8, 0, 2, 3, 3, 6, 4, 8, 3, 8, 8, 1, 1, 5, 1, 0, 7, 0, 2, 0, 8, 3, 4, 7, 7, 8, 5, 9, 7, 6, 5, 9, 7, 9, 6, 3, 2, 1, 8, 9, 8, 7, 6, 9, 2, 0, 0, 5, 0, 8, 7, 4, 6, 4, 0, 5, 9, 1, 9, 9, 8, 3, 1, 4, 9, 0, 0, 1, 4, 6, 7, 7, 8, 4, 4, 2, 1, 4, 4, 7, 8, 0, 5, 7, 7, 5, 1, 9, 1, 7, 0, 3, 8, 4, 3, 2, 8
Offset: 2

Views

Author

Li GAN, Nov 11 2015

Keywords

Examples

			77.880233648...
		

Crossrefs

Cf. A217459 (2^Pi), A260629 (3^Pi), A073233, A260635.

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*4^pi))); // Vincenzo Librandi, Nov 30 2015
  • Mathematica
    First@ RealDigits@ N[4^Pi, 120] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    4^Pi
    
  • PARI
    { default(realprecision, 100); x=(4^Pi)/10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 29 2015
    

Extensions

More digits from Altug Alkan, Nov 11 2015

A260635 Decimal expansion of 5^Pi.

Original entry on oeis.org

1, 5, 6, 9, 9, 2, 5, 4, 5, 3, 0, 8, 8, 6, 5, 9, 0, 7, 5, 7, 8, 4, 5, 9, 1, 9, 8, 8, 3, 2, 6, 4, 8, 9, 1, 3, 1, 3, 9, 1, 4, 1, 4, 7, 4, 6, 4, 4, 7, 2, 6, 4, 5, 9, 4, 6, 9, 0, 5, 9, 7, 1, 1, 8, 6, 3, 3, 7, 8, 4, 6, 5, 2, 5, 5, 2, 3, 0, 1, 7, 9, 4, 4, 9, 0, 8, 4, 1, 8, 9, 6, 2, 6, 0, 5, 3, 0, 7, 6, 1
Offset: 3

Views

Author

Li GAN, Nov 11 2015

Keywords

Examples

			156.99254530...
		

Crossrefs

Cf. A217459 (2^Pi), A260629 (3^Pi), A073233, A260634.

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*5^pi))); // Vincenzo Librandi, Nov 30 2015
  • Mathematica
    First@ RealDigits@ N[5^Pi, 120] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    5^Pi
    
  • PARI
    { default(realprecision, 100); x=(5^Pi)/100; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 29 2015
    

Extensions

More digits from Altug Alkan, Nov 11 2015
Showing 1-3 of 3 results.