A079290
Composite numbers satisfying A073078(n)=(n+1)/2.
Original entry on oeis.org
9, 15, 25, 27, 49, 81, 121, 125, 169, 243, 289, 343, 361, 529, 625, 729, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 9409, 10201, 10609, 11449
Offset: 1
-
A073078 := proc(n)
local bink,k ;
bink := 1 ;
for k from 1 do
bink := 2*bink*(2-1/k) ;
if modp(bink,n) = 0 then
return k;
end if;
end do:
end proc:
A079290 := proc(n)
option remember;
local a;
if n = 1 then
9;
else
for a from procname(n-1)+1 do
if not isprime(a) and 2*A073078(a) = a+1 then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Aug 20 2014
-
b[n_] := For[k=1, True, k++, If[Divisible[Binomial[2k, k], n], Return[k]]];
Select[Select[Range[12000], CompositeQ], b[#] == (# + 1)/2&] (* Jean-François Alcover, Oct 31 2019 *)
-
p=5;forprime(q=7,1e4,forstep(n=p+2,q-2,2, for(s=2,n\2, if(binomial(2*s,s)%n==0,next(2)));print1(n", ")); p=q) \\ Charles R Greathouse IV, May 24 2013
A380410
Numbers with greater product of prime indices than sum of prime factors.
Original entry on oeis.org
1, 45, 49, 63, 75, 77, 81, 91, 99, 105, 117, 119, 121, 125, 126, 133, 135, 143, 147, 150, 153, 161, 162, 165, 169, 171, 175, 182, 187, 189, 195, 198, 203, 207, 209, 210, 217, 221, 225, 231, 234, 238, 242, 243, 245, 247, 250, 253, 255, 259, 261, 266, 270, 273
Offset: 1
126 has prime indices {1,2,2,4} and prime factors {2,3,3,7}, and 16 > 15, so 126 is in the sequence.
The terms together with their prime indices begin:
1: {}
45: {2,2,3}
49: {4,4}
63: {2,2,4}
75: {2,3,3}
77: {4,5}
81: {2,2,2,2}
91: {4,6}
99: {2,2,5}
105: {2,3,4}
117: {2,2,6}
119: {4,7}
121: {5,5}
125: {3,3,3}
126: {1,2,2,4}
133: {4,8}
135: {2,2,2,3}
For factors instead of indices we have
A002808.
The case of prime powers is
A244623.
Positions of positive terms in
A380344.
Partitions of this type are counted by
A380411.
A001222 counts prime factors with multiplicity.
Triangles:
Statistics:
Combinations:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Times@@prix[#]>Plus@@Prime/@prix[#]&]
A158248
Composite numbers with primitive root 10.
Original entry on oeis.org
49, 289, 343, 361, 529, 841, 2209, 2401, 3481, 3721, 4913, 6859, 9409, 11881, 12167, 12769, 16807, 17161, 22201, 24389, 27889, 32041, 32761, 37249, 49729, 52441, 54289, 66049, 69169, 72361, 83521, 97969
Offset: 1
-
select(n -> not isprime(n) and numtheory:-primroot(9,n) = 10,[$2..10000]);
# N. J. A. Sloane, Jul 05 2012
-
Select[Range[10^5], GCD[10, #] == 1 && #/2 < MultiplicativeOrder[10, #] < # - 1 &] (* Ray Chandler, Oct 17 2012 *)
A346316
Composite numbers with primitive root 6.
Original entry on oeis.org
121, 169, 289, 1331, 1681, 2197, 3481, 3721, 4913, 6241, 6889, 7921, 10609, 11449, 11881, 12769, 14641, 16129, 17161, 18769, 22801, 24649, 28561, 32041, 39601, 49729, 51529, 52441, 54289, 63001, 66049, 68921, 73441, 76729, 83521, 120409, 134689, 139129, 157609
Offset: 1
-
isA033948 := proc(n)
if n in {1,2,4} then
true;
elif type(n,'odd') and nops(numtheory[factorset](n)) = 1 then
true;
elif type(n,'even') and type(n/2,'odd') and nops(numtheory[factorset](n/2)) = 1 then
true;
else
false;
end if;
end proc:
isA167794 := proc(n)
if not isA033948(n) or n = 1 then
false;
elif numtheory[order](6,n) = numtheory[phi](n) then
true;
else
false;
end if;
end proc:
A346316 := proc(n)
option remember;
local a;
if n = 1 then
121;
else
for a from procname(n-1)+1 do
if not isprime(a) and isA167794(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A346316(n),n=1..20) ; # R. J. Mathar, Sep 15 2021
-
Select[Range[160000], CompositeQ[#] && PrimitiveRoot[#, 6] == 6 &] (* Amiram Eldar, Jul 13 2021 *)
-
isok(m) = (m>1) && !isprime(m) && (gcd(m, 6)==1) && (znorder(Mod(6, m))==eulerphi(m)); \\ Michel Marcus, Aug 12 2021
Original entry on oeis.org
1, 4, 9, 17, 22, 25, 46, 49, 81, 118, 121, 169, 243, 334, 337, 343, 361, 529, 841, 961, 1331, 1369, 2187, 2197, 2209, 2809, 3481, 3721, 4489, 5041, 6241, 6859, 6889, 7921, 10201, 11449, 12167, 14641, 16129, 17161, 19321, 22201, 24389, 26569, 27889, 29791, 29929, 32041, 32761, 38809, 39601, 44521, 49729
Offset: 1
a(3) = 9 is a term because A377059(9) = 6 > A377059(k) for all k < 9.
-
f:= proc(n) local x,r;
for x from 2 to n do
if igcd(x,n) <> 1 then next fi;
r:= numtheory:-order(x,n);
if r::even and r < n-1 then return r fi
od;
0
end proc:
J:= 1: m:= 0: count:= 0:
for k from 2 while count < 100 do
v:= f(k);
if v > m then m:= v; J:= J,k; count:= count+1 fi;
od:
J;
Showing 1-5 of 5 results.
Comments