cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A332821 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 1 (mod 3).

Original entry on oeis.org

2, 5, 9, 11, 12, 16, 17, 21, 23, 28, 30, 31, 39, 40, 41, 47, 49, 52, 54, 57, 59, 66, 67, 70, 72, 73, 75, 76, 83, 87, 88, 91, 96, 97, 100, 102, 103, 109, 111, 116, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 148, 149, 154, 157, 159, 165, 167, 168, 169, 172, 175, 179, 180, 183, 184, 186, 190, 191, 197, 203, 211, 212
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, this sequence and A332822.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332822. This sequence has the primes with odd indexes, those in A031368.
The terms are the even numbers in A332822 halved. The terms are also the numbers m such that 5m is in A332822, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332820, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332820, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332822, which consists exactly of those numbers. For larger primes, an alternating pattern applies as described in the previous paragraph.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting number is in A332822, which consists entirely of those numbers.
The product of any 2 terms of this sequence is in A332822, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332822, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of ones in A332823; equivalently, numbers in row 3k+1 of A277905 for some k >= 0.
Subsequences: intersection of A026478 and A066208, A031368 (prime terms), A033431\{0}, A052934\{1}, A069486, A099800, A167747\{1}, A244725\{0}, A244728\{0}, A338911 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 212, Mod[Total@ #, 3] == 1 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332821(n) =  { my(f = factor(n)); (1==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332820(k) : k >= 1} U {A003961(A332822(k)) : k >= 1}.
{a(n) : n >= 1} = {A332822(k)^2 : k >= 1} U {A331590(2, A332820(k)) : k >= 1}.

A016911 a(n) = (6*n)^3.

Original entry on oeis.org

0, 216, 1728, 5832, 13824, 27000, 46656, 74088, 110592, 157464, 216000, 287496, 373248, 474552, 592704, 729000, 884736, 1061208, 1259712, 1481544, 1728000, 2000376, 2299968, 2628072, 2985984, 3375000, 3796416, 4251528, 4741632, 5268024, 5832000
Offset: 0

Views

Author

Keywords

Comments

Volume of a cube with side 6*n. - Wesley Ivan Hurt, Jul 05 2014

Examples

			a(1) = (6*1)^3 = 216.
		

Crossrefs

Cf. similar sequences listed in A244725.

Programs

  • Magma
    [(6*n)^3: n in [0..40]]; // Vincenzo Librandi, May 03 2011
    
  • Magma
    I:=[0,216,1728,5832]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 05 2014
  • Maple
    A016911:=n->216*n^3: seq(A016911(n), n=0..40); # Wesley Ivan Hurt, Jul 05 2014
  • Mathematica
    Table[216 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[216 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 05 2014 *)

Formula

G.f.: 216*x*(1 + 4*x + x^2)/(1 - x)^4. - Vincenzo Librandi, Jul 05 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Jul 05 2014
a(n) = 216 * A000578(n). - Wesley Ivan Hurt, Jul 05 2014
Sum_{n>=1} 1/a(n) = zeta(3)/216. - Amiram Eldar, Oct 02 2020

A244728 a(n) = 9*n^3.

Original entry on oeis.org

0, 9, 72, 243, 576, 1125, 1944, 3087, 4608, 6561, 9000, 11979, 15552, 19773, 24696, 30375, 36864, 44217, 52488, 61731, 72000, 83349, 95832, 109503, 124416, 140625, 158184, 177147, 197568, 219501, 243000, 268119, 294912, 323433, 353736, 385875, 419904
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Comments

Volume of a pyramid (square base) with side and height 3*n. - Wesley Ivan Hurt, Aug 25 2014
Volume of the smallest square cuboid containing a ring torus where the tube and hole diameters are both n. - Torlach Rush, Jun 04 2019

Crossrefs

Cf. similar sequences listed in A244725.
Cf. A287335 (see Crossrefs).

Programs

  • GAP
    List([0..40], n-> 9*n^3); # G. C. Greubel, Jun 30 2019
  • Magma
    [9*n^3: n in [0..40]];
    
  • Magma
    I:=[0,9,72,243]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Maple
    A244728:=n->9*n^3: seq(A244728(n), n=0..40); # Wesley Ivan Hurt, Aug 25 2014
  • Mathematica
    Table[9n^3, {n,0,40}] (* or *) CoefficientList[Series[9*x*(1+4*x+x^2)/(1- x)^4, {x,0,40}], x]
  • PARI
    vector(40, n, n--; 9*n^3) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [9*n^3 for n in (0..40)] # G. C. Greubel, Jun 30 2019
    

Formula

G.f.: 9*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
E.g.f.: 9*x*(1 + 3*x + x^2)*exp(x). - G. C. Greubel, Jun 30 2019

A244727 a(n) = 7*n^3.

Original entry on oeis.org

0, 7, 56, 189, 448, 875, 1512, 2401, 3584, 5103, 7000, 9317, 12096, 15379, 19208, 23625, 28672, 34391, 40824, 48013, 56000, 64827, 74536, 85169, 96768, 109375, 123032, 137781, 153664, 170723, 189000, 208537, 229376, 251559, 275128, 300125, 326592, 354571, 384104
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Comments

After 0, subsequence of A038855.
Volume of a truncated square pyramid with base lengths n and 2n, and height 3n. - Wesley Ivan Hurt, Apr 05 2016

Crossrefs

Cf. A038855.
Cf. similar sequences listed in A244725.

Programs

  • Magma
    [7*n^3: n in [0..40]];
    
  • Magma
    I:=[0,7,56,189]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
  • Maple
    A244727:=n->7*n^3: seq(A244727(n), n=0..100); # Wesley Ivan Hurt, Apr 05 2016
  • Mathematica
    Table[7 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[7 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
    7 Range[0, 50]^3 (* Wesley Ivan Hurt, Apr 05 2016 *)
    LinearRecurrence[{4,-6,4,-1},{0,7,56,189},40] (* Harvey P. Dale, Apr 04 2024 *)

Formula

G.f.: 7*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
E.g.f.: 7*exp(x)*x*(1 + 3*x + x^2). - Stefano Spezia, May 09 2023

A244729 a(n) = 10*n^3.

Original entry on oeis.org

0, 10, 80, 270, 640, 1250, 2160, 3430, 5120, 7290, 10000, 13310, 17280, 21970, 27440, 33750, 40960, 49130, 58320, 68590, 80000, 92610, 106480, 121670, 138240, 156250, 175760, 196830, 219520, 243890, 270000, 297910, 327680, 359370, 393040, 428750, 466560
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244725.

Programs

  • Magma
    [10*n^3: n in [0..40]];
    
  • Magma
    I:=[0,10,80,270]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
  • Mathematica
    Table[10 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[10 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]

Formula

G.f.: 10*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

A016803 a(n) = (4*n)^3.

Original entry on oeis.org

0, 64, 512, 1728, 4096, 8000, 13824, 21952, 32768, 46656, 64000, 85184, 110592, 140608, 175616, 216000, 262144, 314432, 373248, 438976, 512000, 592704, 681472, 778688, 884736, 1000000, 1124864, 1259712, 1404928, 1560896, 1728000, 1906624, 2097152
Offset: 0

Views

Author

Keywords

Comments

Volume of a cube with side 4n. - Wesley Ivan Hurt, Jul 05 2014

Crossrefs

Cf. A000578.
Cf. similar sequences listed in A244725.

Programs

Formula

G.f.: 64*x*(1 + 4*x + x^2)/(1 - x)^4. - Vincenzo Librandi, Jul 05 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Jul 05 2014
a(n) = 64 * A000578(n). - Wesley Ivan Hurt, Jul 05 2014

A017523 a(n) = (12*n)^3.

Original entry on oeis.org

0, 1728, 13824, 46656, 110592, 216000, 373248, 592704, 884736, 1259712, 1728000, 2299968, 2985984, 3796416, 4741632, 5832000, 7077888, 8489664, 10077696, 11852352, 13824000, 16003008, 18399744, 21024576, 23887872, 27000000, 30371328, 34012224
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A244725.

Programs

  • Magma
    [1728*n^3: n in [0..40]]; // Vincenzo Librandi, Jul 05 2014
    
  • Magma
    I:=[0,1728,13824, 46656]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 05 2014
  • Mathematica
    Table[1728 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[1728 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 05 2014 *)
  • Maxima
    makelist((12*n)^3,n,0,30); /* Martin Ettl, Oct 21 2012 */
    

Formula

G.f.: 1728*x*(1 + 4*x + x^2)/(1 - x)^4. - Vincenzo Librandi, Jul 05 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Jul 05 2014

A244726 a(n) = 6*n^3.

Original entry on oeis.org

0, 6, 48, 162, 384, 750, 1296, 2058, 3072, 4374, 6000, 7986, 10368, 13182, 16464, 20250, 24576, 29478, 34992, 41154, 48000, 55566, 63888, 73002, 82944, 93750, 105456, 118098, 131712, 146334, 162000, 178746, 196608, 215622, 235824, 257250, 279936, 303918
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244725.

Programs

  • Magma
    [6*n^3: n in [0..40]];
    
  • Magma
    I:=[0,6,48,162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
  • Mathematica
    Table[6 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[6 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]

Formula

G.f.: 6*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

A016983 a(n) = (7*n)^3.

Original entry on oeis.org

0, 343, 2744, 9261, 21952, 42875, 74088, 117649, 175616, 250047, 343000, 456533, 592704, 753571, 941192, 1157625, 1404928, 1685159, 2000376, 2352637, 2744000, 3176523, 3652264, 4173281, 4741632, 5359375, 6028568, 6751269, 7529536, 8365427, 9261000, 10218313
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A244725.

Programs

  • Magma
    [(7*n)^3: n in [0..40]]; // Vincenzo Librandi, May 22 2011
  • Mathematica
    Table[343 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[343 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 05 2014 *)

Formula

G.f.: 343*x*(1 + 4*x + x^2)/(1 - x)^4. - Vincenzo Librandi, Jul 05 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Vincenzo Librandi, Jul 05 2014

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...
Showing 1-10 of 10 results.