cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A016935 a(n) = (6*n + 2)^3.

Original entry on oeis.org

8, 512, 2744, 8000, 17576, 32768, 54872, 85184, 125000, 175616, 238328, 314432, 405224, 512000, 636056, 778688, 941192, 1124864, 1331000, 1560896, 1815848, 2097152, 2406104, 2744000, 3112136
Offset: 0

Views

Author

Keywords

Comments

The generating function is 8 times the g.f. of A016779. - R. J. Mathar, May 07 2008

Examples

			a(1) = (6*1 + 2)^3 = 8^3 = 512.
		

Crossrefs

Programs

  • Magma
    [(6*n+2)^3: n in [0..50]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6*Range[0,30]+2)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{8,512,2744,8000},30] (* Harvey P. Dale, Aug 23 2019 *)

Formula

a(n) = 8*A016779(n). - R. J. Mathar, May 07 2008
Sum_{n>=0} 1/a(n) = Pi^3 / (324*sqrt(3)) + 13*zeta(3)/216. - Amiram Eldar, Oct 02 2020
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020
G.f.: 8*(1+60*x+93*x^2+8*x^3)/(-1+x)^4. - Wesley Ivan Hurt, Oct 02 2020

A016959 a(n) = (6*n + 4)^3.

Original entry on oeis.org

64, 1000, 4096, 10648, 21952, 39304, 64000, 97336, 140608, 195112, 262144, 343000, 438976, 551368, 681472, 830584, 1000000, 1191016, 1404928, 1643032, 1906624, 2197000, 2515456, 2863288, 3241792
Offset: 0

Views

Author

Keywords

Examples

			a(0) = (6*0 + 4)^3 = 4^3 = 64.
		

Crossrefs

Programs

  • Magma
    [(6*n+4)^3: n in [0..40]]; // Vincenzo Librandi, May 06 2011
  • Mathematica
    CoefficientList[Series[8*(x^3 + 60*x^2 + 93*x + 8)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 27 2013 *)
    (6*Range[0,30]+4)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{64,1000,4096,10648},30] (* Harvey P. Dale, Nov 22 2018 *)

Formula

G.f.: 8*(x^3 + 60*x^2 + 93*x + 8)/(1-x)^4. - Vincenzo Librandi, Jan 27 2013
Sum_{n>=0} 1/a(n) = -Pi^3 / (324*sqrt(3)) + 13*zeta(3)/216. - Amiram Eldar, Oct 02 2020
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020

A016971 a(n) = (6*n + 5)^3.

Original entry on oeis.org

125, 1331, 4913, 12167, 24389, 42875, 68921, 103823, 148877, 205379, 274625, 357911, 456533, 571787, 704969, 857375, 1030301, 1225043, 1442897, 1685159, 1953125, 2248091, 2571353, 2924207, 3307949
Offset: 0

Views

Author

Keywords

Examples

			a(0) = (6*0 + 5)^3 = 5^3 = 125.
		

Crossrefs

Programs

Formula

Sum_{n>=0} 1/a(n) = -Pi^3/(36*sqrt(3)) + 91*zeta(3)/216. - Amiram Eldar, Oct 02 2020
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020
a(n) = (125+831*x+339*x^2+x^3)/(-1+x)^4. - Wesley Ivan Hurt, Oct 02 2020

A016947 a(n) = (6*n + 3)^3.

Original entry on oeis.org

27, 729, 3375, 9261, 19683, 35937, 59319, 91125, 132651, 185193, 250047, 328509, 421875, 531441, 658503, 804357, 970299, 1157625, 1367631, 1601613, 1860867, 2146689, 2460375, 2803221, 3176523, 3581577, 4019679, 4492125, 5000211, 5545233, 6128487, 6751269
Offset: 0

Views

Author

Keywords

Examples

			a(0) = (6*0 + 3)^3 = 3^3 = 27.
		

Crossrefs

Programs

  • Magma
    [(6*n+3)^3: n in [0..50]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    Table[(6*n + 3)^3, {n, 0, 25}] (* Amiram Eldar, Oct 02 2020 *)
    LinearRecurrence[{4,-6,4,-1},{27,729,3375,9261},40] (* Harvey P. Dale, Jul 02 2025 *)

Formula

Sum_{n>=0} 1/a(n) = 7*zeta(3)/216. - Amiram Eldar, Oct 02 2020
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020
G.f.: 27*(1+x)*(1+22*x+x^2)/(-1+x)^4. - Wesley Ivan Hurt, Oct 02 2020
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^3.
a(n) = 3^3*A016755(n).
Sum_{n>=0} (-1)^n/a(n) = Pi^3/864. (End)

A244725 a(n) = 5*n^3.

Original entry on oeis.org

0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642 (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64), A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512), A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).

Programs

  • Magma
    [5*n^3: n in [0..40]];
    
  • Magma
    I:=[0,5,40,135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Mathematica
    Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
  • PARI
    a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

A305728 Numbers of the form 216*p^3, where p is a Pythagorean prime (A002144).

Original entry on oeis.org

27000, 474552, 1061208, 5268024, 10941048, 14886936, 32157432, 49027896, 84027672, 152273304, 197137368, 222545016, 279726264, 311665752, 555412248, 714516984, 835896888, 1118386872, 1280824056, 1552836312, 1651400568, 2593941624, 2732256792, 3023464536, 3666512088
Offset: 1

Views

Author

Bruno Berselli, Jun 22 2018

Keywords

Comments

No term can be written as x^2 + y^2 + z^9.

Crossrefs

Programs

  • Magma
    [216*p^3: p in PrimesUpTo(300) | IsOne(p mod 4)];
    
  • Maple
    P := select(p -> isprime(p), [seq(n, n=5..1000, 4)]):
    seq((6*p)^3, p in P); # Peter Luschny, Jun 22 2018
  • Mathematica
    P = Select[Range[5, 300, 4], PrimeQ];
    A305728 = (6P)^3 (* Jean-François Alcover, Jun 22 2018 *)
  • PARI
    first(n) = my(res=List()); forprime(p=5, oo, if(p%4 == 1, listput(res,(6*p)^3); n--; if(n==0, return(res)))) \\ David A. Corneth, Jun 27 2018
Showing 1-6 of 6 results.