A320531 T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Examples
Square array begins: 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 2, 4, 6, 8, 10, 12, 14, ... A005843 0, 3, 12, 27, 48, 75, 108, 147, ... A033428 0, 4, 32, 108, 256, 500, 864, 1372, ... A033430 0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792 0, 6, 192, 1458, 6144, 18750, 46656, 100842, ... 0, 7, 448, 5103, 28672, 109375, 326592, 823543, ... ... T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
References
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
Links
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
Crossrefs
Programs
-
Mathematica
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]]; Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
Maxima
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$ tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Formula
T(n,k) = (2*k)*T(n-1,k) - (k^2)*T(n-2,k).
G.f. for columns: x/(1 - k*x)^2.
E.g.f. for columns: x*exp(k*x).
T(n,1) = A001477(n).
T(n,2) = A001787(n).
T(n,3) = A027471(n+1).
T(n,4) = A002697(n).
T(n,5) = A053464(n).
T(n,6) = A053469(n), n > 0.
T(n,7) = A027473(n), n > 0.
T(n,8) = A053539(n).
T(n,9) = A053540(n), n > 0.
T(n,10) = A053541(n), n > 0.
T(n,11) = A081127(n).
T(n,12) = A081128(n).
Comments