cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A101321 Table T(n,m) = 1 + n*m*(m+1)/2 read by antidiagonals: centered polygonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 7, 4, 1, 1, 11, 13, 10, 5, 1, 1, 16, 21, 19, 13, 6, 1, 1, 22, 31, 31, 25, 16, 7, 1, 1, 29, 43, 46, 41, 31, 19, 8, 1, 1, 37, 57, 64, 61, 51, 37, 22, 9, 1, 1, 46, 73, 85, 85, 76, 61, 43, 25, 10, 1, 1, 56, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 1, 67
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004

Keywords

Comments

Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.

Examples

			The upper left corner of the infinite array T is
|0| 1   1   1   1   1   1   1   1   1   1 ... A000012
|1| 1   2   4   7  11  16  22  29  37  46 ... A000124
|2| 1   3   7  13  21  31  43  57  73  91 ... A002061
|3| 1   4  10  19  31  46  64  85 109 136 ... A005448
|4| 1   5  13  25  41  61  85 113 145 181 ... A001844
|5| 1   6  16  31  51  76 106 141 181 226 ... A005891
|6| 1   7  19  37  61  91 127 169 217 271 ... A003215
|7| 1   8  22  43  71 106 148 197 253 316 ... A069099
|8| 1   9  25  49  81 121 169 225 289 361 ... A016754
|9| 1  10  28  55  91 136 190 253 325 406 ... A060544
		

Crossrefs

Programs

Formula

T(n,2) = A016777(n). T(n,3) = A016921(n). T(n,4) = A017281(n).
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015

Extensions

Edited by R. J. Mathar, Oct 21 2009

A069190 Centered 24-gonal numbers.

Original entry on oeis.org

1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 10 2002

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
		

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022

Extensions

More terms from Harvey P. Dale, Jul 17 2011

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A195047 Concentric 17-gonal numbers.

Original entry on oeis.org

0, 1, 17, 35, 68, 103, 153, 205, 272, 341, 425, 511, 612, 715, 833, 953, 1088, 1225, 1377, 1531, 1700, 1871, 2057, 2245, 2448, 2653, 2873, 3095, 3332, 3571, 3825, 4081, 4352, 4625, 4913, 5203, 5508, 5815, 6137, 6461, 6800, 7141, 7497, 7855, 8228, 8603, 8993
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric heptadecagonal numbers or concentric heptakaidecagonal numbers.

Crossrefs

Programs

Formula

a(n) = 17*n^2/4+13*((-1)^n-1)/8. [Typo fixed by Ivan Panchenko, Nov 08 2013]
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+15*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069130(n+1). (End)
From Bruno Berselli, Sep 29 2011: (Start)
a(n) = a(-n) = (34*n^2+13*(-1)^n-13)/8.
a(n) = A151978(A061925(n)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/102 + tan(sqrt(13/17)*Pi/2)*Pi/sqrt(221). - Amiram Eldar, Jan 16 2023

A010007 a(0) = 1, a(n) = 17*n^2 + 2 for n>0.

Original entry on oeis.org

1, 19, 70, 155, 274, 427, 614, 835, 1090, 1379, 1702, 2059, 2450, 2875, 3334, 3827, 4354, 4915, 5510, 6139, 6802, 7499, 8230, 8995, 9794, 10627, 11494, 12395, 13330, 14299, 15302, 16339, 17410, 18515, 19654, 20827, 22034, 23275, 24550, 25859, 27202, 28579
Offset: 0

Views

Author

Keywords

Comments

Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=3, s=2. After 1, all terms are in A000408. - Bruno Berselli, Feb 06 2012

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [17*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 17 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {19, 70, 155}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+15*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f. : (x*(x+1)*17+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(34)/68*Pi*coth(Pi*sqrt(34)/17) = 1.09001290652... - R. J. Mathar, May 07 2024
a(n) = A069130(n)+A069130(n+1). - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012

A264824 Centered 17-gonal (or heptadecagonal) primes.

Original entry on oeis.org

103, 613, 1123, 1327, 3571, 5101, 6427, 10711, 16831, 19993, 22543, 30091, 34273, 39883, 59263, 72727, 77521, 79153, 92821, 98227, 105673, 115363, 129643, 146983, 156061, 177481, 197677, 238477, 241333, 264793, 311713, 324871, 341701, 428401, 487561, 503983, 524893
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Primes of the form (17*k^2 - 17*k + 2)/2.

Crossrefs

Programs

  • PARI
    for(n=1, 1e3, if(isprime(k=(17*n^2-17*n+2)/2), print1(k,", "))) \\ Altug Alkan, Nov 26 2015
Showing 1-6 of 6 results.