cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A080956 a(n) = (n+1)*(2-n)/2.

Original entry on oeis.org

1, 1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, -1224, -1274, -1325, -1377
Offset: 0

Views

Author

Paul Barry, Mar 01 2003

Keywords

Comments

Coefficient of x in the polynomial C(n,0)+C(n+1,1)x+C(n+2,2)x(x-1)/2.
Equals A154990 * [1,2,3,...]. - Gary W. Adamson & Mats Granvik, Jan 19 2009
a(n) is essentially the case 1 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_1(n) = n*(3-n)/2 and a(n) = P_1(n+1). See A005563 for the case k=0. - Peter Luschny, Jul 08 2011
This is the case k=-1 of the formula (k*m*(m+1)-(-1)^k+1)/2. See similar sequences listed in A262221. - Bruno Berselli, Sep 17 2015

Examples

			a(5) = 6-(1+2+3+4+5). - _Stanislav Sykora_, Feb 19 2014
		

Crossrefs

Programs

  • Magma
    [(n+1)*(2-n)/2: n in [0..80]]; // Vincenzo Librandi, Jul 08 2011
    
  • Maple
    G(x):=exp(x)*(x-x^2/2): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..54 ); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    FoldList[#1 - #2 &, 1, Range[0, 44]] (* Arkadiusz Wesolowski, May 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,1,0},60] (* Harvey P. Dale, Nov 29 2019 *)
  • PARI
    a(n)=(n+1)*(2-n)/2;
    
  • SageMath
    def A080956(n): return (2-n)*(n+1)//2 # G. C. Greubel, May 08 2025

Formula

a(n) = 2*(C(n+1, 1)-C(n+2, 2)) = (n+1)*(2-n)/2.
G.f.: (1-2*x)/(1-x)^3. - R. J. Mathar, Jun 11 2009
If we define f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = f(n,n-1,2), for n>=3. - Milan Janjic, Dec 20 2008
E.g.f.: exp(x)*(1-x^2/2). - Zerinvary Lajos, Apr 05 2009, R. J. Mathar, Jun 11 2009
a(n) = - A214292(n,1) for n > 0. - Reinhard Zumkeller, Jul 12 2012
Recurrence: a(0)=1, a(n+1) = a(n) - n. Also a(n)=(n+1)-Sum[k=1..n](k). Also a(n) = A000027(n+1) - A000217(n). Also, for n>1, a(n) = - A000096(n-2). - Stanislav Sykora, Feb 19 2014
Sum_{n>=3} 1/a(n) = -11/9. - Amiram Eldar, Sep 26 2022

Extensions

Lajos e.g.f. adapted to offset zero by R. J. Mathar, Jun 11 2009

A069190 Centered 24-gonal numbers.

Original entry on oeis.org

1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 10 2002

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
		

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022

Extensions

More terms from Harvey P. Dale, Jul 17 2011

A064200 a(n) = 12*n*(n-1).

Original entry on oeis.org

0, 0, 24, 72, 144, 240, 360, 504, 672, 864, 1080, 1320, 1584, 1872, 2184, 2520, 2880, 3264, 3672, 4104, 4560, 5040, 5544, 6072, 6624, 7200, 7800, 8424, 9072, 9744, 10440, 11160, 11904, 12672, 13464, 14280, 15120, 15984, 16872, 17784, 18720, 19680, 20664, 21672
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001

Keywords

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band III_2, Heft 3, Leipzig: B. G. Teubner, 1906, p. 341.

Crossrefs

Programs

Formula

a(n) = 24*(n-1) + a(n-1) for n>0, with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(0)=0, a(1)=0, a(2)=24, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Jul 22 2015
G.f.: -(24*x^2)/(x-1)^3. - Harvey P. Dale, Jul 22 2015
a(n) = 2*A003154(n) - 2. See Twin Stars illustration. - Leo Tavares, Aug 23 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=2} 1/a(n) = 1/12.
Sum_{n>=2} (-1)^n/a(n) = (2*log(2) - 1)/12.
Product_{n>=2} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).
Product_{n>=2} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)

A173307 a(n) = 13*n*(n+1).

Original entry on oeis.org

0, 26, 78, 156, 260, 390, 546, 728, 936, 1170, 1430, 1716, 2028, 2366, 2730, 3120, 3536, 3978, 4446, 4940, 5460, 6006, 6578, 7176, 7800, 8450, 9126, 9828, 10556, 11310, 12090, 12896, 13728, 14586, 15470, 16380, 17316, 18278, 19266, 20280, 21320, 22386, 23478, 24596
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Programs

  • Magma
    [13*n*(n+1): n in [0..40]]; // Vincenzo Librandi, Sep 28 2013
    
  • Magma
    I:=[0, 26, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 28 2013
    
  • Mathematica
    Table[13 n (n + 1), {n, 0, 50}] (* or *) CoefficientList[Series[26 x/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 28 2013 *)
    LinearRecurrence[{3,-3,1},{0,26,78},50] (* Harvey P. Dale, Apr 08 2014 *)
  • PARI
    a(n)=13*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 26*A000217(n).
From Vincenzo Librandi, Sep 28 2013: (Start)
G.f.: 26*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/Pi)*cos(sqrt(17/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/Pi)*cos(3*Pi/(2*sqrt(13))). (End)
From Elmo R. Oliveira, Dec 14 2024: (Start)
E.g.f.: 13*exp(x)*x*(2 + x).
a(n) = 13*A002378(n) = 2*A152741(n). (End)

Extensions

Incorrect formulas and examples deleted by R. J. Mathar, Jan 04 2011

A010015 a(0) = 1, a(n) = 25*n^2 + 2 for n > 0.

Original entry on oeis.org

1, 27, 102, 227, 402, 627, 902, 1227, 1602, 2027, 2502, 3027, 3602, 4227, 4902, 5627, 6402, 7227, 8102, 9027, 10002, 11027, 12102, 13227, 14402, 15627, 16902, 18227, 19602, 21027, 22502, 24027, 25602, 27227, 28902, 30627, 32402, 34227, 36102, 38027, 40002
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A160842. - Bruno Berselli, Feb 06 2012
The identity (25*n^2 + 1)^2 - (25*n^2 + 2)*(5*n)^2 = 1 can be written as (A016850(n+1) + 1)^2 - a(n+1)*A008587(n+1)^2 = 1. - Vincenzo Librandi, Feb 08 2012

Crossrefs

Cf. A206399.

Programs

Formula

G.f.: (1+x)*(1 + 23*x + x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*25 + 2)*e^x - 1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) =3/4+sqrt(2)/20*Pi*coth(Pi*sqrt(2)/5) = 1.062575323280590.. - R. J. Mathar, May 07 2024
a(n) = A262221(n)+A262221(n+1). - R. J. Mathar, May 07 2024

A270693 Alternating sum of centered 25-gonal numbers.

Original entry on oeis.org

1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2016

Keywords

Comments

The absolute value alternating sum of centered k-gonal numbers gives concentric k-gonal numbers.
More generally, the ordinary generating function for the alternating sum of centered k-gonal numbers is (1 - (k - 2)*x + x^2)/((1 - x)*(1 + x)^3).

Crossrefs

Programs

  • Magma
    [((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
  • Maple
    A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
  • Mathematica
    LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41]
    Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
  • PARI
    x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
    

Formula

G.f.: (1 - 23*x + x^2)/((1 - x)*(1 + x)^3).
E.g.f.: (1/8)*(-21*exp(x) + (29 - 150*x + 50*x^2)*exp(-x)).
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = ((-1)^n*(50*n^2 + 100*n + 29) - 21)/8.

A276264 Centered 25-gonal primes.

Original entry on oeis.org

151, 251, 701, 1951, 3001, 4751, 10151, 12401, 16651, 19501, 28201, 29401, 33151, 38501, 39901, 45751, 56951, 63901, 65701, 81001, 87151, 95701, 104651, 114001, 136501, 144451, 147151, 158201, 178501, 181501, 193751, 219451, 232901, 257401, 275651, 290701, 318001, 322001
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Primes of the form (25*k^2 + 25*k + 2)/2.
Numbers k such that (25*k^2 + 25*k + 2)/2 is prime: 3, 4, 7, 12, 15, 19, 28, 31, 36, 39, 47, 48, 51, 55, 56, 60, 67, 71, 72, 80, 83, 87, 91, ...

Crossrefs

Cf. centered k-gonal primes listed in A276261.

Programs

  • Maple
    select(isprime, [seq((25*k^2+25*k+2)/2, k=1..200)]); # Robert Israel, Sep 01 2016
  • Mathematica
    Intersection[Table[(25 k^2 + 25 k + 2)/2, {k, 0, 1000}], Prime[Range[28000]]]
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=(25*n^2 + 25*n + 2)/2), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016
Showing 1-7 of 7 results.