cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A153641 Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0

Views

Author

Peter Luschny, Dec 29 2008

Keywords

Comments

In the following the expression [n odd] is 1 if n is odd, 0 otherwise.
(+) W_n(0) = E_n are the Euler (or secant) numbers A122045.
(+) W_n(1) = T_n are the signed tangent numbers, see A009006.
(+) W_{n-1}(1) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli number A027641/A027642.
(+) W_n(-1) 2^{-n}(n+1) = G_n the Genocchi number A036968.
(+) W_n(1/2) 2^{n} are the signed generalized Euler (Springer) number, see A001586.
(+) | W_n([n odd]) | the number of alternating permutations A000111.
(+) | W_n([n odd]) / n! | for 0<=n the Euler zeta number A099612/A099617 (see Wikipedia on Bernoulli number). - Peter Luschny, Dec 29 2008
The diagonals in the full triangle (with zero coefficients) of the polynomials have the general form E(k)*binomial(n+k,k) (k>=0 fixed, n=0,1,...) where E(n) are the Euler numbers in the enumeration A122045. For k=2 we find the triangular numbers A000217 and for k=4 A154286. - Peter Luschny, Jan 06 2009
From Peter Bala, Jun 10 2009: (Start)
The Swiss-Knife polynomials W_n(x) may be expressed in terms of the Bernoulli polynomials B(n,x) as
... W_n(x) = 4^(n+1)/(2*n+2)*[B(n+1,(x+3)/4) - B(n+1,(x+1)/4)].
The Swiss-Knife polynomials are, apart from a multiplying factor, examples of generalized Bernoulli polynomials.
Let X be the Dirichlet character modulus 4 defined by X(4*n+1) = 1, X(4*n+3) = -1 and X(2*n) = 0. The generalized Bernoulli polynomials B(X;n,x), n = 1,2,..., associated with the character X are defined by means of the generating function
... t*exp(x*t)*(exp(t)-exp(3*t))/(exp(4*t)-1) = sum {n = 1..inf} B(X;n,x)*t^n/n!.
The first few values are B(X;1,x) = -1/2, B(X;2,x) = -x, B(X,3,x) = -3/2*(x^2-1) and B(X;4,x) = -2*(x^3-3*x).
In general, W_n(x) = -2/(n+1)*B(X;n+1,x).
For the theory of generalized Bernoulli polynomials associated to a periodic arithmetical function see [Cohen, Section 9.4].
The generalized Bernoulli polynomials may be used to evaluate twisted sums of k-th powers. For the present case the result is
sum{n = 0..4*N-1} X(n)*n^k = 1^k - 3^k + 5^k - 7^k + ... - (4*N-1)^k
= [B(X;k+1,4*N) - B(X;k+1,0)]/(k+1) = [W_k(0) - W_k(4*N)]/2.
For the proof apply [Cohen, Corollary 9.4.17 with m = 4 and x = 0].
The generalized Bernoulli polynomials and the Swiss-Knife polynomials are also related to infinite sums of powers through their Fourier series - see the formula section below. For a table of the coefficients of generalized Bernoulli polynomials attached to a Dirichlet character modulus 8 see A151751.
(End)
The Swiss-Knife polynomials provide a general formula for alternating sums of powers similar to the formula which are provided by the Bernoulli polynomials for non-alternating sums of powers (see the Luschny link). Sequences covered by this formula include A001057, A062393, A062392, A011934, A144129, A077221, A137501, A046092. - Peter Luschny, Jul 12 2009
The greatest common divisor of the nonzero coefficients of the decapitated Swiss-Knife polynomials is exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd primes, symbolically:
gcd(coeffs(SKP_{n}(x) - x^n)) = A155457(n) (n>1). - Peter Luschny, Dec 16 2009
Another version is at A119879. - Philippe Deléham, Oct 26 2013

Examples

			1
x
x^2  -1
x^3  -3x
x^4  -6x^2   +5
x^5 -10x^3  +25x
x^6 -15x^4  +75x^2  -61
x^7 -21x^5 +175x^3 -427x
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]

Crossrefs

W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........ A000012
W_1: 0, 1, 2, 3, 4, 5, ........ A001477
W_2: -1, 0, 3, 8, 15, 24, ........ A067998
W_3: 0, -2, 2, 18, 52, 110, ........ A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ... A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ... A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ... A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ... A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [Peter Luschny, Jul 07 2009]

Programs

  • Maple
    w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
    # Coefficients with zeros:
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
    # Recursion
    W := proc(n,z) option remember; local k,p;
    if n = 0 then 1 else p := irem(n+1,2);
    z^n - p + add(`if`(irem(k,2)=1,0,
    W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
    # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
  • Mathematica
    max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
    Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
  • Sage
    def A046978(k):
        if k % 4 == 0:
            return 0
        return (-1)**(k // 4)
    def A153641_poly(n, x):
        return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
    for n in (0..7): print(A153641_poly(n, x))  # Peter Luschny, Oct 24 2011

Formula

W_n(x) = Sum_{k=0..n}{v=0..k} (-1)^v binomial(k,v)*c_k*(x+v+1)^n where c_k = frac((-1)^(floor(k/4))/2^(floor(k/2))) [4 not div k] (Iverson notation).
From Peter Bala, Jun 10 2009: (Start)
E.g.f.: 2*exp(x*t)*(exp(t)-exp(3*t))/(1-exp(4*t))= 1 + x*t + (x^2-1)*t^2/2! + (x^3-3*x)*t^3/3! + ....
W_n(x) = 1/(2*n+2)*Sum_{k=0..n+1} 1/(k+1)*Sum_{i=0..k} (-1)^i*binomial(k,i)*((x+4*i+3)^(n+1) - (x+4*i+1)^(n+1)).
Fourier series expansion for the generalized Bernoulli polynomials:
B(X;2*n,x) = (-1)^n*(2/Pi)^(2*n)*(2*n)! * {sin(Pi*x/2)/1^(2*n) - sin(3*Pi*x/2)/3^(2*n) + sin(5*Pi*x/2)/5^(2*n) - ...}, valid for 0 <= x <= 1 when n >= 1.
B(X;2*n+1,x) = (-1)^(n+1)*(2/Pi)^(2*n+1)*(2*n+1)! * {cos(Pi*x/2)/1^(2*n+1) - cos(3*Pi*x/2)/3^(2*n+1) + cos(5*Pi*x/2)/5^(2*n+1) - ...}, valid for 0 <= x <= 1 when n >= 1 and for 0 <= x < 1 when n = 0.
(End)
E.g.f.: exp(x*t) * sech(t). - Peter Luschny, Jul 07 2009
O.g.f. as a J-fraction: z/(1-x*z+z^2/(1-x*z+4*z^2/(1-x*z+9*z^2/(1-x*z+...)))) = z + x*z^2 + (x^2-1)*z^3 + (x^3-3*x)*z^4 + .... - Peter Bala, Mar 11 2012
Conjectural o.g.f.: Sum_{n >= 0} (1/2^((n-1)/2))*cos((n+1)*Pi/4)*( Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - (k + x)*t) ) = 1 + x*t + (x^2 - 1)*t^2 + (x^3 - 3*x)*t^3 + ... (checked up to O(t^13)), which leads to W_n(x) = Sum_{k = 0..n} 1/2^((k - 1)/2)*cos((k + 1)*Pi/4)*( Sum_{j = 0..k} (-1)^j*binomial(k, j)*(j + x)^n ). - Peter Bala, Oct 03 2016

A144130 a(n) = ChebyshevT(4, n).

Original entry on oeis.org

1, 1, 97, 577, 1921, 4801, 10081, 18817, 32257, 51841, 79201, 116161, 164737, 227137, 305761, 403201, 522241, 665857, 837217, 1039681, 1276801, 1552321, 1870177, 2234497, 2649601, 3120001, 3650401, 4245697, 4910977, 5651521
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A144129.

Programs

Formula

From Paul Barry, Nov 17 2009: (Start)
G.f.: (1-4x+102x^2+92x^3+x^4)/(1-x)^5;
a(n) = 8*n^4-8*n^2+1. (End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Mar 15 2023

Extensions

Changed offset from 1 to 0 by Vincenzo Librandi, May 30 2014

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A154560 a(n) = (n+3)^2*n/2 + 1.

Original entry on oeis.org

1, 9, 26, 55, 99, 161, 244, 351, 485, 649, 846, 1079, 1351, 1665, 2024, 2431, 2889, 3401, 3970, 4599, 5291, 6049, 6876, 7775, 8749, 9801, 10934, 12151, 13455, 14849, 16336, 17919, 19601, 21385, 23274, 25271, 27379, 29601, 31940, 34399, 36981
Offset: 0

Views

Author

Klaus Brockhaus, Jan 12 2009

Keywords

Comments

8*a(n) is the y value of a solution (x, y) to the Diophantine equation 2*x^3+12*x^2 = y^2. The corresponding x value is A152811(n+1).

Examples

			a(5) = (5+3)^2*5/2+1 = 64*5/2+1 = 161.
		

Crossrefs

Cf. A058794 (row 3 of A007754), A117560 (n*(n^2-1)/2-1), A144129 (4*n^3-3*n), A141530, A152811 (2*(n^2+2*n-2)).

Programs

  • Magma
    [(n+3)^2*n/2 + 1: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
  • PARI
    {for(n=0,40,print1((n+3)^2*n/2+1,","))}
    

Formula

G.f.: (1+5*x-4*x^2+x^3)/(1-x)^4.
a(n) = A058794(n)/2.
a(n) = A117560(n+2) - n - 1.
a(2*n) = A144129(n+1).
a(2*n-1) = A141530(n+1). a(n) = -a(-n-4). - Bruno Berselli, Sep 05 2011
a(n) = ((n+2-i)^3+(n+2+i)^3)/4, where i is the imaginary unit. - Nicolas Bělohoubek, Jul 03 2025

A239608 Sin( arcsin(n)- 2*arccos(n) )^2.

Original entry on oeis.org

0, 1, 676, 9801, 59536, 235225, 715716, 1825201, 4096576, 8346321, 15760900, 27994681, 47279376, 76545001, 119552356, 181037025, 266864896, 384199201, 541679076, 749609641, 1020163600, 1367594361, 1808460676, 2361862801, 3049690176, 3896880625, 4931691076
Offset: 0

Views

Author

Keywords

Comments

The terms are integers.
This is assuming the "standard branch" of arcsin and arccos, where sin(arccos(n)) = cos(arcsin(n)) = sqrt(1-n^2). - Robert Israel, May 25 2014

Crossrefs

Programs

  • Magma
    [n^2*(3-4*n^2)^2 : n in [0..50]]; // Vincenzo Librandi, May 30 2014
  • Mathematica
    G[n_, a_, b_] := G[n, a, b] = Sin[a ArcSin[ n] + b ArcCos[n]]^2 // ComplexExpand // FullSimplify; Table[G[n, 1, -2], {n, 0, 43}]
    CoefficientList[Series[- x (x + 1) (x^4 + 668 x^3 + 4422 x^2 + 668 x + 1)/(x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2014 *)
    Table[n^2*(3-4*n^2)^2,{n,0,30}] (* Harvey P. Dale, Aug 05 2016 *)
  • PARI
    vector(100, n, round(sin(asin(n-1) - 2*acos(n-1))^2)) \\ Colin Barker, May 24 2014
    

Formula

a(n) = n^2*(3-4*n^2)^2. G.f.: -x*(x+1)*(x^4+668*x^3+4422*x^2+668*x+1) / (x-1)^7. - Colin Barker, May 24 2014
a(n) = A144129(n)^2. - Robert Israel, May 25 2014

A243132 32*n^6 - 48*n^4 + 18*n^2 - 1.

Original entry on oeis.org

-1, 1, 1351, 19601, 119071, 470449, 1431431, 3650401, 8193151, 16692641, 31521799, 55989361, 94558751, 153090001, 239104711, 362074049, 533729791, 768398401, 1083358151, 1499219281, 2040327199, 2735188721, 3616921351, 4723725601, 6099380351, 7793761249
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(6,n).

Crossrefs

Programs

  • Magma
    [32*n^6-48*n^4+18*n^2-1: n in [0..40]];
  • Mathematica
    Table[ChebyshevT[6, n], {n, 0, 40}] (* or *) Table[32 n^6 - 48 n^4 + 18 n^2 - 1, {n, 0, 20}]

Formula

G.f.: (-1 + 8*x + 1323*x^2 + 10200*x^3 + 10165*x^4 + 1344*x^5 + x^6)/(1 - x)^7.
a(n) = (2*n^2 - 1)*(16*n^4 - 16*n^2 + 1).

A243134 128*n^8 - 256*n^6 + 160*n^4 - 32*n^2 + 1.

Original entry on oeis.org

1, 1, 18817, 665857, 7380481, 46099201, 203253121, 708158977, 2081028097, 5374978561, 12545596801, 26986755841, 54276558337, 103182433537, 186979578241, 325142092801, 545471324161, 886731088897, 1401864610177, 2161873163521, 3260441587201, 4819400974081
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(8,n).

Crossrefs

Programs

  • Magma
    [128*n^8-256*n^6+160*n^4-32*n^2+1: n in [0..40]];
  • Mathematica
    Table[ChebyshevT[8, n], {n, 0, 40}] (* or *) Table[128 n^8 - 256 n^6 + 160 n^4 - 32 n^2 + 1, {n, 0, 20}]
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,1,18817,665857,7380481,46099201,203253121,708158977,2081028097},30] (* Harvey P. Dale, Nov 01 2015 *)

Formula

G.f.: (1 - 8*x + 18844*x^2 + 496456*x^3 + 2065222*x^4 + 2065096*x^5 + 496540*x^6 + 18808*x^7 + x^8)/(1 - x)^9.
a(0)=1, a(1)=1, a(2)=18817, a(3)=665857, a(4)=7380481, a(5)=46099201, a(6)=203253121, a(7)=708158977, a(8)=2081028097, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)- 9*a(n-8)+ a(n-9). - Harvey P. Dale, Nov 01 2015

A243136 a(n) = 512*n^10 - 1280*n^8 + 1120*n^6 - 400*n^4 + 50*n^2 - 1.

Original entry on oeis.org

-1, 1, 262087, 22619537, 457470751, 4517251249, 28860511751, 137379191137, 528572943487, 1730726404001, 4993116004999, 13007560326001, 31154649926687, 69544807113937, 146217791079751, 291977237261249, 557471159562751, 1023286908188737, 1814011722210887
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(10,n).

Crossrefs

Programs

  • Magma
    [512*n^10-1280*n^8+1120*n^6-400*n^4+50*n^2-1: n in [0..30]];
  • Maple
    a:= n-> simplify(ChebyshevT(10, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 31 2014
  • Mathematica
    Table[ChebyshevT[10, n], {n, 0, 30}] (* or *) Table[512 n^10 - 1280 n^8 + 1120 n^6 - 400 n^4 + 50 n^2 - 1, {n, 0, 30}]

Formula

G.f.: (-1 + 12*x + 262021*x^2 + 19736800*x^3 + 223070134*x^4 + 685903960*x^5 + 685903498*x^6 + 223070464*x^7 + 19736635*x^8 + 262076*x^9 + x^10)/(1 - x)^11.
a(n) = (2*n^2 - 1)*(256*n^8 - 512*n^6 + 304*n^4 - 48*n^2 + 1).
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11). - Wesley Ivan Hurt, May 04 2024

A206481 a(n) + a(n+2) = n^3.

Original entry on oeis.org

0, 1, 1, 7, 26, 57, 99, 159, 244, 353, 485, 647, 846, 1081, 1351, 1663, 2024, 2433, 2889, 3399, 3970, 4601, 5291, 6047, 6876, 7777, 8749, 9799, 10934, 12153, 13455, 14847, 16336, 17921, 19601, 21383, 23274, 25273, 27379, 29599, 31940, 34401, 36981, 39687
Offset: 1

Views

Author

Keywords

Comments

If the offset were 0, the formula would be: a(0)=0, a(1)=1, for n>=2: a(n) = (n-1)^3 - a(n-2).

Crossrefs

Cf. A144129 (bisection).

Programs

  • Mathematica
    LinearRecurrence[{4, -7, 8, -7, 4, -1}, {0, 1, 1, 7, 26, 57}, 60]
    RecurrenceTable[{a[1]==0,a[2]==1,a[n]==(n-2)^3-a[n-2]},a,{n,50}] (* Harvey P. Dale, Sep 14 2012 *)
  • Python
    prpr = 0
    prev = 1
    for n in range(1,77):
        print(prpr, end=',')
        curr = n*n*n - prpr    # a(n+1)
        prpr = prev
        prev = curr

Formula

a(n) = (1/2)*((n-3)*n^2-4*cos((Pi*n)/2)+2). - Harvey P. Dale, Sep 14 2012
G.f.: x^2*(1 - 3*x + 10*x^2 - 3*x^3 + x^4)/((1-x)^4*(1+x^2)). - Paul D. Hanna, Sep 14 2012

A243131 a(n) = 16*n^5 - 20*n^3 + 5*n.

Original entry on oeis.org

0, 1, 362, 3363, 15124, 47525, 120126, 262087, 514088, 930249, 1580050, 2550251, 3946812, 5896813, 8550374, 12082575, 16695376, 22619537, 30116538, 39480499, 51040100, 65160501, 82245262, 102738263, 127125624, 155937625, 189750626, 229188987
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(5,n).

Crossrefs

Programs

  • Magma
    [16*n^5-20*n^3+5*n: n in [0..40]];
    
  • Maple
    a:= n-> simplify(ChebyshevT(5, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 31 2014
  • Mathematica
    Table[ChebyshevT[5, n], {n, 0, 40}] (* or *) Table[16*n^5 - 20*n^3 + 5*n, {n, 0, 20}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,362,3363,15124,47525},30] (* Harvey P. Dale, Aug 03 2023 *)
  • PARI
    apply(x->polchebyshev(5,1,x), vector(30,i,i-1)) \\ Hugo Pfoertner, Oct 18 2022

Formula

a(n) = n*(16*n^4-20*n^2+5) = (-1/4)*n *(-8*n^2+5+sqrt(5))*(8*n^2-5+sqrt(5)).
G.f.: x*(1 + 356*x + 1206*x^2 + 356*x^3 + x^4)/(1 - x)^6.
Showing 1-10 of 14 results. Next