cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A188644 Array of (k^n + k^(-n))/2 where k = (sqrt(x^2-1) + x)^2 for integers x >= 1.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 97, 17, 1, 1, 1351, 577, 31, 1, 1, 18817, 19601, 1921, 49, 1, 1, 262087, 665857, 119071, 4801, 71, 1, 1, 3650401, 22619537, 7380481, 470449, 10081, 97, 1, 1, 50843527, 768398401, 457470751, 46099201, 1431431, 18817, 127, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given the function f(x,y) = (sqrt(x^2+y) + x)^2 and constant k=f(x,y), then for all integers x >= 1 and y=[+-]1, k may be irrational, but (k^n + k^(-n))/2 always produces integer sequences; y=-1 results shown here; y=1 results are A188645.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{2*k}(x), evaluated at x=n. - Seiichi Manyama, Dec 30 2018

Examples

			Row 2 gives {( (2+sqrt(3))^(2*n) + (2-sqrt(3))^(2*n) )/2}.
Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   1,      1,         1,            1, ...
   2 | 1,   7,     97,      1351,        18817, ...
   3 | 1,  17,    577,     19601,       665857, ...
   4 | 1,  31,   1921,    119071,      7380481, ...
   5 | 1,  49,   4801,    470449,     46099201, ...
   6 | 1,  71,  10081,   1431431,    203253121, ...
   7 | 1,  97,  18817,   3650401,    708158977, ...
   8 | 1, 127,  32257,   8193151,   2081028097, ...
   9 | 1, 161,  51841,  16692641,   5374978561, ...
  10 | 1, 199,  79201,  31521799,  12545596801, ...
  11 | 1, 241, 116161,  55989361,  26986755841, ...
  12 | 1, 287, 164737,  94558751,  54276558337, ...
  13 | 1, 337, 227137, 153090001, 103182433537, ...
  14 | 1, 391, 305761, 239104711, 186979578241, ...
  15 | 1, 449, 403201, 362074049, 325142092801, ...
  ...
		

Crossrefs

Row 2 is A011943, row 3 is A056771, row 8 is A175633, (row 2)*2 is A067902, (row 9)*2 is A089775.
(column 1)*2 is A060626.
Cf. A188645 (f(x, y) as above with y=1).
Diagonals give A173129, A322899.

Programs

  • Mathematica
    max = 9; y = -1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)

Formula

A(n,k) = (A188646(n,k-1) + A188646(n,k))/2.
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited by Seiichi Manyama, Dec 30 2018
More terms from Seiichi Manyama, Jan 01 2019

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A144131 Primes of the form T_4(n), where T_4(x) = 8x^4 - 8x^2 + 1 is the fourth Chebyshev polynomial (of the first kind).

Original entry on oeis.org

97, 577, 4801, 32257, 79201, 305761, 665857, 1039681, 7380481, 8380417, 10681441, 11995201, 18495361, 42448897, 49980001, 54100801, 63101377, 68001121, 96911041, 110736961, 227143297, 266851201, 296071777, 398240641, 479694337
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite under Bunyakovsky's conjecture. - Charles R Greathouse IV, May 29 2013

Crossrefs

Cf. A144130.

Programs

  • Maple
    T4:= unapply(orthopoly[T](4,x),x):
    select(isprime, map(T4, [$0..300])); # Robert Israel, Apr 27 2020
  • Mathematica
    lst={};Do[p=ChebyshevT[4,n];If[PrimeQ[p],AppendTo[lst,p]],{n,9^3}];lst
  • PARI
    select(isprime,vector(100,n,polchebyshev(4,1,n))) \\ Charles R Greathouse IV, May 29 2013

A239609 Sin(arcsin(n)- 3 arccos(n))^2.

Original entry on oeis.org

1, 1, 9409, 332929, 3690241, 23049601, 101626561, 354079489, 1040514049, 2687489281, 6272798401, 13493377921, 27138279169, 51591216769, 93489789121, 162571046401, 272735662081, 443365544449, 700932305089, 1080936581761, 1630220793601, 2409700487041
Offset: 0

Views

Author

Keywords

Comments

The terms are integers.
This is assuming the "standard branch" of arcsin and arccos, so that sin(arccos(n)) = cos(arcsin(n)) = sqrt(1-n^2). - Robert Israel, May 25 2014

Crossrefs

Programs

  • Mathematica
    G[n_, a_, b_] := G[n, a, b] = Sin[a ArcSin[ n] + b ArcCos[n]]^2 // ComplexExpand // FullSimplify; Table[G[n, 1, -3], {n, 0, 43}]
  • PARI
    vector(100, n, round(sin(asin(n-1) - 3*acos(n-1))^2)) \\ Colin Barker, May 24 2014

Formula

G.f.: -(x^8 +9400*x^7 +248284*x^6 +1032520*x^5 +1032646*x^4 +248200*x^3 +9436*x^2 -8*x +1) / (x -1)^9. - Colin Barker, May 24 2014
a(n) = A144130(n)^2. - Robert Israel, May 25 2014

A243132 32*n^6 - 48*n^4 + 18*n^2 - 1.

Original entry on oeis.org

-1, 1, 1351, 19601, 119071, 470449, 1431431, 3650401, 8193151, 16692641, 31521799, 55989361, 94558751, 153090001, 239104711, 362074049, 533729791, 768398401, 1083358151, 1499219281, 2040327199, 2735188721, 3616921351, 4723725601, 6099380351, 7793761249
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(6,n).

Crossrefs

Programs

  • Magma
    [32*n^6-48*n^4+18*n^2-1: n in [0..40]];
  • Mathematica
    Table[ChebyshevT[6, n], {n, 0, 40}] (* or *) Table[32 n^6 - 48 n^4 + 18 n^2 - 1, {n, 0, 20}]

Formula

G.f.: (-1 + 8*x + 1323*x^2 + 10200*x^3 + 10165*x^4 + 1344*x^5 + x^6)/(1 - x)^7.
a(n) = (2*n^2 - 1)*(16*n^4 - 16*n^2 + 1).

A243134 128*n^8 - 256*n^6 + 160*n^4 - 32*n^2 + 1.

Original entry on oeis.org

1, 1, 18817, 665857, 7380481, 46099201, 203253121, 708158977, 2081028097, 5374978561, 12545596801, 26986755841, 54276558337, 103182433537, 186979578241, 325142092801, 545471324161, 886731088897, 1401864610177, 2161873163521, 3260441587201, 4819400974081
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(8,n).

Crossrefs

Programs

  • Magma
    [128*n^8-256*n^6+160*n^4-32*n^2+1: n in [0..40]];
  • Mathematica
    Table[ChebyshevT[8, n], {n, 0, 40}] (* or *) Table[128 n^8 - 256 n^6 + 160 n^4 - 32 n^2 + 1, {n, 0, 20}]
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,1,18817,665857,7380481,46099201,203253121,708158977,2081028097},30] (* Harvey P. Dale, Nov 01 2015 *)

Formula

G.f.: (1 - 8*x + 18844*x^2 + 496456*x^3 + 2065222*x^4 + 2065096*x^5 + 496540*x^6 + 18808*x^7 + x^8)/(1 - x)^9.
a(0)=1, a(1)=1, a(2)=18817, a(3)=665857, a(4)=7380481, a(5)=46099201, a(6)=203253121, a(7)=708158977, a(8)=2081028097, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)- 9*a(n-8)+ a(n-9). - Harvey P. Dale, Nov 01 2015

A243136 a(n) = 512*n^10 - 1280*n^8 + 1120*n^6 - 400*n^4 + 50*n^2 - 1.

Original entry on oeis.org

-1, 1, 262087, 22619537, 457470751, 4517251249, 28860511751, 137379191137, 528572943487, 1730726404001, 4993116004999, 13007560326001, 31154649926687, 69544807113937, 146217791079751, 291977237261249, 557471159562751, 1023286908188737, 1814011722210887
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(10,n).

Crossrefs

Programs

  • Magma
    [512*n^10-1280*n^8+1120*n^6-400*n^4+50*n^2-1: n in [0..30]];
  • Maple
    a:= n-> simplify(ChebyshevT(10, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 31 2014
  • Mathematica
    Table[ChebyshevT[10, n], {n, 0, 30}] (* or *) Table[512 n^10 - 1280 n^8 + 1120 n^6 - 400 n^4 + 50 n^2 - 1, {n, 0, 30}]

Formula

G.f.: (-1 + 12*x + 262021*x^2 + 19736800*x^3 + 223070134*x^4 + 685903960*x^5 + 685903498*x^6 + 223070464*x^7 + 19736635*x^8 + 262076*x^9 + x^10)/(1 - x)^11.
a(n) = (2*n^2 - 1)*(256*n^8 - 512*n^6 + 304*n^4 - 48*n^2 + 1).
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11). - Wesley Ivan Hurt, May 04 2024

A243131 a(n) = 16*n^5 - 20*n^3 + 5*n.

Original entry on oeis.org

0, 1, 362, 3363, 15124, 47525, 120126, 262087, 514088, 930249, 1580050, 2550251, 3946812, 5896813, 8550374, 12082575, 16695376, 22619537, 30116538, 39480499, 51040100, 65160501, 82245262, 102738263, 127125624, 155937625, 189750626, 229188987
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(5,n).

Crossrefs

Programs

  • Magma
    [16*n^5-20*n^3+5*n: n in [0..40]];
    
  • Maple
    a:= n-> simplify(ChebyshevT(5, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 31 2014
  • Mathematica
    Table[ChebyshevT[5, n], {n, 0, 40}] (* or *) Table[16*n^5 - 20*n^3 + 5*n, {n, 0, 20}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,362,3363,15124,47525},30] (* Harvey P. Dale, Aug 03 2023 *)
  • PARI
    apply(x->polchebyshev(5,1,x), vector(30,i,i-1)) \\ Hugo Pfoertner, Oct 18 2022

Formula

a(n) = n*(16*n^4-20*n^2+5) = (-1/4)*n *(-8*n^2+5+sqrt(5))*(8*n^2-5+sqrt(5)).
G.f.: x*(1 + 356*x + 1206*x^2 + 356*x^3 + x^4)/(1 - x)^6.

A243133 64*n^7 - 112*n^5 + 56*n^3 - 7*n.

Original entry on oeis.org

0, 1, 5042, 114243, 937444, 4656965, 17057046, 50843527, 130576328, 299537289, 628855930, 1229215691, 2265463212, 3974443213, 6686381534, 10850138895, 17062657936, 26102926097, 38970776898, 56930852179, 81562047860, 114812765781, 159062294182
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(7,n).

Crossrefs

Programs

  • Magma
    [64*n^7-112*n^5+56*n^3-7*n: n in [0..40]];
  • Mathematica
    Table[ChebyshevT[7, n], {n, 0, 40}] (* or *)  Table[64 n^7 - 112 n^5 + 56 n^3 - 7 n, {n, 0, 40}]
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,1,5042,114243,937444,4656965,17057046,50843527},40] (* Harvey P. Dale, Mar 27 2015 *)

Formula

G.f.: (x + 5034*x^2 + 73935*x^3 + 164620*x^4 + 73935*x^5 + 5034*x^6 + x^7)/(1 - x)^8.
a(n) = n*(64*n^6 - 112*n^4 + 56*n^2 - 7).
a(0)=0, a(1)=1, a(2)=5042, a(3)=114243, a(4)=937444, a(5)=4656965, a(6)=17057046, a(7)=50843527, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)- 70*a(n-4)+ 56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Harvey P. Dale, Mar 27 2015

A243135 256*n^9 - 576*n^7 + 432*n^5 - 120*n^3 + 9*n.

Original entry on oeis.org

0, 1, 70226, 3880899, 58106404, 456335045, 2421980406, 9863382151, 33165873224, 96450076809, 250283080090, 592479412811, 1300371936876, 2678768828749, 5228741809214, 9743412645135, 17438019715216, 30122754096401, 50428155189474, 82094249361619
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

References

  • Chebyshev polynomial of the first kind T(9,n).

Crossrefs

Programs

  • Magma
    [256*n^9-576*n^7+432*n^5-120*n^3+9*n: n in [0..20]];
  • Maple
    a:= n-> simplify(ChebyshevT(9, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 31 2014
  • Mathematica
    Table[ChebyshevT[9, n], {n, 0, 20}] (* or *) Table[256 n^9 - 576 n^7 + 432 n^5 - 120 n^3 + 9 n, {n, 0, 20}]

Formula

G.f.: x *(1 + 70216*x + 3178684*x^2 + 22457464*x^3 + 41484550*x^4 + 22457464*x^5 + 3178684*x^6 + 70216*x^7 + x^8)/(1 - x)^10.
a(n) = n*(4*n^2 - 3)*(64*n^6 - 96*n^4 + 36*n^2 - 3).
Showing 1-10 of 10 results.