A001091 a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4.
1, 4, 31, 244, 1921, 15124, 119071, 937444, 7380481, 58106404, 457470751, 3601659604, 28355806081, 223244789044, 1757602506271, 13837575261124, 108942999582721, 857706421400644, 6752708371622431, 53163960551578804
Offset: 0
References
- Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- H. Brocard, Notes élémentaires sur le problème de Peel [sic], Nouvelle Correspondance Mathématique, 4 (1878), 337-343.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,-1).
Programs
-
GAP
a:=[1,4];; for n in [3..20] do a[n]:=8*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 26 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1-4*x)/(1-8*x+x^2) )); // G. C. Greubel, Aug 26 2019 -
Mathematica
LinearRecurrence[{8,-1},{1,4},20] (* Harvey P. Dale, May 01 2014 *)
-
PARI
a(n)=subst(poltchebi(n),x,4)
-
PARI
a(n)=n=abs(n); polcoeff((1-4*x)/(1-8*x+x^2)+x*O(x^n),n) /* Michael Somos, Jun 07 2005 */
-
Sage
def A001091_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-4*x)/(1-8*x+x^2) ).list() A001091_list(20) # G. C. Greubel, Aug 26 2019
Formula
G.f.: A(x) = (1-4*x)/(1-8*x+x^2). - Simon Plouffe in his 1992 dissertation
For all elements x of the sequence, 15*(x^2 -1) is a square. Limit_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 11 2002
a(n) = sqrt(15*((A001090(n))^2)+1).
a(n) = ((4+sqrt(15))^n + (4-sqrt(15))^n)/2.
a(n) = 4*S(n-1, 8) - S(n-2, 8) = (S(n, 8) - S(n-2, 8))/2, n>=1; S(n, x) := U(n, x/2) with Chebyshev's polynomials of the 2nd kind, A049310, with S(-1, x) := 0 and S(-2, x) := -1.
a(n) = T(n, 4) with Chebyshev's polynomials of the first kind; see A053120.
a(n)=a(-n). - Ralf Stephan, Jun 06 2005
a(n)*a(n+3) - a(n+1)*a(n+2) = 120. - Ralf Stephan, Jun 06 2005
From Peter Bala, Feb 19 2022: (Start)
a(n) = Sum_{k = 0..floor(n/2)} 4^(n-2*k)*15^k*binomial(n,2*k).
a(n) = [x^n] (4*x + sqrt(1 + 15*x^2))^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 16*x + 4*x^2) is the g.f. of A098269.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k. (End)
From Peter Bala, Aug 17 2022: (Start)
Sum_{n >= 1} 1/(a(n) - (5/2)/a(n)) = 1/3.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (3/2)/a(n)) = 1/5.
Sum_{n >= 1} 1/(a(n)^2 - 5/2) = 1/3 - 1/sqrt(15). (End)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Aug 25 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
Comments