1, 0, 1, -1, 1, 1, 0, 1, 2, 1, 1, 1, 7, 3, 1, 0, 1, 26, 17, 4, 1, -1, 1, 97, 99, 31, 5, 1, 0, 1, 362, 577, 244, 49, 6, 1, 1, 1, 1351, 3363, 1921, 485, 71, 7, 1, 0, 1, 5042, 19601, 15124, 4801, 846, 97, 8, 1, -1, 1, 18817, 114243, 119071, 47525, 10081, 1351, 127, 9, 1, 0, 1, 70226, 665857, 937444, 470449, 120126, 18817, 2024, 161
Offset: 0
As a number triangle, rows begin:
{1},
{0,1},
{-1,1,1},
{0,1,2,1},
...
As a square array, rows begin
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
-1, 1, 7, 17, 31, ...
0, 1, 26, 99, 244, ...
1, 1, 97, 577, 1921, ...
A349071
a(n) = T(n, 2*n), where T(n, x) is the Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 2, 31, 846, 32257, 1580050, 94558751, 6686381534, 545471324161, 50428155189474, 5210183616019999, 594949288292777902, 74404881332329766401, 10114032809617941274226, 1484781814660796486716447, 234114571438498509048719550, 39459584112457284328544403457
Offset: 0
-
Table[ChebyshevT[n, 2*n], {n, 0, 20}]
-
a(n) = polchebyshev(n, 1, 2*n); \\ Michel Marcus, Nov 07 2021
-
from sympy import chebyshevt
def A349071(n): return chebyshevt(n,n<<1) # Chai Wah Wu, Nov 08 2023
A349070
a(n) = T(3*n, n), where T(n, x) is the Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 1, 1351, 3880899, 28355806081, 429364731169925, 11731978174095849671, 525735133485219615486151, 36049049892983023583045990401, 3588952618789973294871796462342089, 497937643558017209960022199517744044999, 93156956377055671178035977181412016527566091
Offset: 0
-
Table[ChebyshevT[3*n, n], {n, 0, 13}]
-
a(n) = polchebyshev(3*n, 1, n); \\ Michel Marcus, Nov 07 2021
A349072
a(n) = T(n, 3*n), where T(n, x) is the Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 3, 71, 2889, 164737, 12082575, 1083358151, 114812765781, 14040770918401, 1946133989077851, 301491888156044999, 51624542295308885793, 9681761035138427706241, 1973656779656041723763559, 434528364117341972641648967, 102755067271708508826774929325
Offset: 0
-
Table[ChebyshevT[n, 3*n], {n, 0, 20}]
-
a(n) = polchebyshev(n, 1, 3*n); \\ Michel Marcus, Nov 07 2021
-
from sympy import chebyshevt
def A349072(n): return chebyshevt(n,3*n) # Chai Wah Wu, Nov 08 2023
A323117
a(n) = T_{n}(n-1) where T_{n}(x) is a Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 0, 1, 26, 577, 15124, 470449, 17057046, 708158977, 33165873224, 1730726404001, 99612037019890, 6269617090376641, 428438743526336412, 31592397706723526737, 2500433598371461203374, 211434761022028192051201, 19023879409608991280267536
Offset: 0
-
Table[ChebyshevT[n, n - 1], {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
-
a(n) = polchebyshev(n, 1, n-1);
-
a(n) = round(cos(n*acos(n-1))); \\ Seiichi Manyama, Mar 05 2021
-
a(n) = if(n==0, 1, n*sum(k=0, n, (2*n-4)^k*binomial(n+k, 2*k)/(n+k))); \\ Seiichi Manyama, Mar 05 2021
A343259
a(n) = 2 * T(n,n/2) where T(n,x) is a Chebyshev polynomial of the first kind.
Original entry on oeis.org
2, 1, 2, 18, 194, 2525, 39202, 710647, 14760962, 345946302, 9034502498, 260219353691, 8195978831042, 280256592535933, 10340256951198914, 409468947059131650, 17322711762013765634, 779742677038695037937, 37210469265847998489922, 1876572071974094803391179
Offset: 0
-
Table[2*ChebyshevT[n, n/2], {n, 1, 20}] (* Amiram Eldar, Apr 09 2021 *)
-
a(n) = 2*polchebyshev(n, 1, n/2);
-
a(n) = round(2*cos(n*acos(n/2)));
-
a(n) = if(n==0, 2, 2*n*sum(k=0, n, (n-2)^k*binomial(n+k, 2*k)/(n+k)));
Comments