cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A173129 a(n) = cosh(2 * n * arccosh(n)).

Original entry on oeis.org

1, 1, 97, 19601, 7380481, 4517251249, 4097989415521, 5170128475599457, 8661355881006882817, 18605234632923999244961, 49862414878754347585980001, 163104845048002042971670685041, 639582975902942936737758325440001
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Maple
    seq(orthopoly[T](2*n,n), n=0..50); # Robert Israel, Dec 27 2018
  • Mathematica
    Table[Round[Cosh[2 n ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    Round[Table[1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x), {x, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
    Table[ChebyshevT[2*n, n], {n, 0, 15}] (* Vaclav Kotesovec, Nov 07 2021 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2-1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
    
  • PARI
    {a(n) = polchebyshev(2*n, 1, n)} \\ Seiichi Manyama, Dec 28 2018
    
  • PARI
    {a(n) = polchebyshev(n, 1, 2*n^2-1)} \\ Seiichi Manyama, Dec 29 2018

Formula

a(n) = (1/2)*((n+sqrt(n^2-1))^(2*n) + (n-sqrt(n^2-1))^(2*n)). - Artur Jasinski, Feb 14 2010, corrected by Vaclav Kotesovec, Apr 05 2016
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2-1)^(n-k)*n^(2*k). - Seiichi Manyama, Dec 27 2018
a(n) = T_{2n}(n) where T_{2n} is a Chebyshev polynomial of the first kind. - Robert Israel, Dec 27 2018
a(n) = T_{n}(2*n^2-1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018

A323118 a(n) = U_{n}(n) where U_{n}(x) is a Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 2, 15, 204, 3905, 96030, 2883167, 102213944, 4178507265, 193501094490, 10011386405999, 572335117886532, 35827847605137601, 2437406399741075126, 179059769134174484415, 14127079203550978667760, 1191321539697176278429697, 106935795565608726499866930
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, n], {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
  • PARI
    a(n) = polchebyshev(n, 2, n);
    
  • PARI
    a(n) = sum(k=0, n\2, (n^2-1)^k*n^(n-2*k)*binomial(n+1, 2*k+1));
    
  • PARI
    a(n) = sum(k=0, n, (2*n-2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 03 2021

Formula

a(n) = Sum_{k=0..floor(n/2)} (n^2-1)^k*n^(n-2*k) * binomial(n+1,2*k+1).
a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Jan 05 2019
a(n) = Sum_{k=0..n} (2*n-2)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (2*n-2)^k * binomial(n+1+k,2*k+1). - Seiichi Manyama, Mar 03 2021

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A342205 a(n) = T(n,n+1) where T(n,x) is a Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 2, 17, 244, 4801, 120126, 3650401, 130576328, 5374978561, 250283080090, 13007560326001, 746411226303612, 46873096812360001, 3197490648645613334, 235451028081583642049, 18614381236112230383376, 1572584048032918633353217
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, n + 1], {n, 0, 16}] (* Amiram Eldar, Mar 05 2021 *)
  • PARI
    a(n) = polchebyshev(n, 1, n+1);
    
  • PARI
    a(n) = round(cos(n*acos(n+1)));
    
  • PARI
    a(n) = if(n==0, 1, n*sum(k=0, n, (2*n)^k*binomial(n+k, 2*k)/(n+k)));

Formula

a(n) = cos(n*arccos(n+1)).
a(n) = n * Sum_{k = 0..n} (2*n)^k * binomial(n+k,2*k)/(n+k) for n > 0.
From Peter Bala, Mar 11 2024: (Start)
a(2*n+1) == 1 (mod (2*n + 1)^3); a(2*n) == 1 (mod (n + 1)*(2*n)^3).
a(n) = hypergeom([n, -n], [1/2], -n/2). (End)
a(n) ~ exp(1) * 2^(n-1) * n^n. - Vaclav Kotesovec, Mar 12 2024

A101124 Number triangle associated to Chebyshev polynomials of first kind.

Original entry on oeis.org

1, 0, 1, -1, 1, 1, 0, 1, 2, 1, 1, 1, 7, 3, 1, 0, 1, 26, 17, 4, 1, -1, 1, 97, 99, 31, 5, 1, 0, 1, 362, 577, 244, 49, 6, 1, 1, 1, 1351, 3363, 1921, 485, 71, 7, 1, 0, 1, 5042, 19601, 15124, 4801, 846, 97, 8, 1, -1, 1, 18817, 114243, 119071, 47525, 10081, 1351, 127, 9, 1, 0, 1, 70226, 665857, 937444, 470449, 120126, 18817, 2024, 161
Offset: 0

Views

Author

Paul Barry, Dec 02 2004

Keywords

Examples

			As a number triangle, rows begin:
  {1},
  {0,1},
  {-1,1,1},
  {0,1,2,1},
  ...
As a square array, rows begin
   1, 1,  1,   1,    1, ...
   0, 1,  2,   3,    4, ...
  -1, 1,  7,  17,   31, ...
   0, 1, 26,  99,  244, ...
   1, 1, 97, 577, 1921, ...
		

Crossrefs

Row sums are A101125.
Diagonal sums are A101126.
Main diagonal gives A115066.
Mirror of A322836.
Cf. A053120.

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[x^k (1 - k x)/(1 - 2 k x + x^2), {x, 0, n}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2017 *)

Formula

Number triangle S(n, k)=T(n-k, k), k
Columns have g.f. x^k(1-kx)/(1-2kx+x^2).
Also, square array if(n=0, 1, T(n, k)) read by antidiagonals.

A349071 a(n) = T(n, 2*n), where T(n, x) is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 2, 31, 846, 32257, 1580050, 94558751, 6686381534, 545471324161, 50428155189474, 5210183616019999, 594949288292777902, 74404881332329766401, 10114032809617941274226, 1484781814660796486716447, 234114571438498509048719550, 39459584112457284328544403457
Offset: 0

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, 2*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 1, 2*n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevt
    def A349071(n): return chebyshevt(n,n<<1) # Chai Wah Wu, Nov 08 2023

Formula

a(n) = cosh(n*arccosh(2*n)).
a(n) = ((2*n + sqrt(4*n^2-1))^n + (2*n - sqrt(4*n^2-1))^n)/2.
a(n) ~ 2^(2*n-1) * n^n.

A349070 a(n) = T(3*n, n), where T(n, x) is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 1, 1351, 3880899, 28355806081, 429364731169925, 11731978174095849671, 525735133485219615486151, 36049049892983023583045990401, 3588952618789973294871796462342089, 497937643558017209960022199517744044999, 93156956377055671178035977181412016527566091
Offset: 0

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, T(k*n, n) ~ 2^(k*n - 1) * n^(k*n).

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[3*n, n], {n, 0, 13}]
  • PARI
    a(n) = polchebyshev(3*n, 1, n); \\ Michel Marcus, Nov 07 2021

Formula

a(n) = cosh(3*n*arccosh(n)).
a(n) = ((n + sqrt(n^2-1))^(3*n) + (n - sqrt(n^2-1))^(3*n))/2.
a(n) ~ 2^(3*n-1) * n^(3*n).

A349072 a(n) = T(n, 3*n), where T(n, x) is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 3, 71, 2889, 164737, 12082575, 1083358151, 114812765781, 14040770918401, 1946133989077851, 301491888156044999, 51624542295308885793, 9681761035138427706241, 1973656779656041723763559, 434528364117341972641648967, 102755067271708508826774929325
Offset: 0

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, T(n, k*n) ~ 2^(n-1) * k^n * n^n.

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, 3*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 1, 3*n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevt
    def A349072(n): return chebyshevt(n,3*n) # Chai Wah Wu, Nov 08 2023

Formula

a(n) = cosh(n*arccosh(3*n)).
a(n) = ((3*n + sqrt(9*n^2-1))^n + (3*n - sqrt(9*n^2-1))^n)/2.
a(n) ~ 2^(n-1) * 3^n * n^n.

A323117 a(n) = T_{n}(n-1) where T_{n}(x) is a Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 0, 1, 26, 577, 15124, 470449, 17057046, 708158977, 33165873224, 1730726404001, 99612037019890, 6269617090376641, 428438743526336412, 31592397706723526737, 2500433598371461203374, 211434761022028192051201, 19023879409608991280267536
Offset: 0

Author

Seiichi Manyama, Jan 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, n - 1], {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
  • PARI
    a(n) = polchebyshev(n, 1, n-1);
    
  • PARI
    a(n) = round(cos(n*acos(n-1))); \\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    a(n) = if(n==0, 1, n*sum(k=0, n, (2*n-4)^k*binomial(n+k, 2*k)/(n+k))); \\ Seiichi Manyama, Mar 05 2021

Formula

a(n)^2 - ((n - 1)^2 - 1) * A323118(n-1)^2 = 1 for n > 0.
a(n) = A322836(n,n-1) for n > 0.
a(n) ~ exp(-1) * 2^(n-1) * n^n. - Vaclav Kotesovec, Jan 05 2019
a(n) = cos(n*arccos(n-1)). - Seiichi Manyama, Mar 05 2021
a(n) = n * Sum_{k=0..n} (2*n-4)^k * binomial(n+k,2*k)/(n+k) for n > 0. - Seiichi Manyama, Mar 05 2021

A343259 a(n) = 2 * T(n,n/2) where T(n,x) is a Chebyshev polynomial of the first kind.

Original entry on oeis.org

2, 1, 2, 18, 194, 2525, 39202, 710647, 14760962, 345946302, 9034502498, 260219353691, 8195978831042, 280256592535933, 10340256951198914, 409468947059131650, 17322711762013765634, 779742677038695037937, 37210469265847998489922, 1876572071974094803391179
Offset: 0

Author

Seiichi Manyama, Apr 09 2021

Keywords

Crossrefs

Main diagonal of A298675.

Programs

  • Mathematica
    Table[2*ChebyshevT[n, n/2], {n, 1, 20}] (* Amiram Eldar, Apr 09 2021 *)
  • PARI
    a(n) = 2*polchebyshev(n, 1, n/2);
    
  • PARI
    a(n) = round(2*cos(n*acos(n/2)));
    
  • PARI
    a(n) = if(n==0, 2, 2*n*sum(k=0, n, (n-2)^k*binomial(n+k, 2*k)/(n+k)));

Formula

a(n) = 2 * cos(n*arccos(n/2)).
a(n) = 2 * n * Sum_{k=0..n} (n-2)^k * binomial(n+k,2*k)/(n+k) for n > 0.
a(n) ~ n^n. - Vaclav Kotesovec, Apr 09 2021
Showing 1-10 of 13 results. Next