cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173129 a(n) = cosh(2 * n * arccosh(n)).

Original entry on oeis.org

1, 1, 97, 19601, 7380481, 4517251249, 4097989415521, 5170128475599457, 8661355881006882817, 18605234632923999244961, 49862414878754347585980001, 163104845048002042971670685041, 639582975902942936737758325440001
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Maple
    seq(orthopoly[T](2*n,n), n=0..50); # Robert Israel, Dec 27 2018
  • Mathematica
    Table[Round[Cosh[2 n ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    Round[Table[1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x), {x, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
    Table[ChebyshevT[2*n, n], {n, 0, 15}] (* Vaclav Kotesovec, Nov 07 2021 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2-1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
    
  • PARI
    {a(n) = polchebyshev(2*n, 1, n)} \\ Seiichi Manyama, Dec 28 2018
    
  • PARI
    {a(n) = polchebyshev(n, 1, 2*n^2-1)} \\ Seiichi Manyama, Dec 29 2018

Formula

a(n) = (1/2)*((n+sqrt(n^2-1))^(2*n) + (n-sqrt(n^2-1))^(2*n)). - Artur Jasinski, Feb 14 2010, corrected by Vaclav Kotesovec, Apr 05 2016
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2-1)^(n-k)*n^(2*k). - Seiichi Manyama, Dec 27 2018
a(n) = T_{2n}(n) where T_{2n} is a Chebyshev polynomial of the first kind. - Robert Israel, Dec 27 2018
a(n) = T_{n}(2*n^2-1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018

A115066 Chebyshev polynomial of the first kind T(n,x), evaluated at x=n.

Original entry on oeis.org

1, 1, 7, 99, 1921, 47525, 1431431, 50843527, 2081028097, 96450076809, 4993116004999, 285573847759211, 17882714781360001, 1216895030905226413, 89415396036432386311, 7055673735003659189775, 595077930963909484707841, 53421565080956452077519377
Offset: 0

Views

Author

Roger L. Bagula, Mar 01 2006

Keywords

Examples

			a(3) = 99 because T[3, x] = 4x^3 - 3x and T[3, 3] = 4*3^3 - 3*3 = 99.
		

References

  • G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1966, p. 35.
  • M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Dover, New York, 1985, page 18.
  • G. Szego, Orthogonal polynomials, Amer. Math. Soc., Providence, 1939, p. 29.

Crossrefs

Programs

  • Maple
    with(orthopoly): seq(T(n,n),n=0..17);
  • Mathematica
    Table[ChebyshevT[n, n], {n, 0, 17}] (* Arkadiusz Wesolowski, Nov 17 2012 *)
  • PARI
    A115066(n)=cos(n*acos(n))  \\ M. F. Hasler, Apr 06 2012
    
  • PARI
    a(n) = polchebyshev(n, 1, n); \\ Seiichi Manyama, Dec 28 2018
    
  • PARI
    a(n) = if(n==0, 1, n*sum(k=0, n, (2*n-2)^k*binomial(n+k, 2*k)/(n+k))); \\ Seiichi Manyama, Mar 05 2021

Formula

a(n) = cos(n*arccos(n)).
a(n) ~ 2^(n-1) * n^n. - Vaclav Kotesovec, Jan 19 2019
a(n) = (A323118(n) - A107995(n-2))/2 for n > 1. - Seiichi Manyama, Mar 05 2021
a(n) = n * Sum_{k=0..n} (2*n-2)^k * binomial(n+k,2*k)/(n+k) for n > 0. - Seiichi Manyama, Mar 05 2021
It appears that a(2*n+1) == 0 (mod (2*n+1)^2) and 2*a(4*n+2) == -2 (mod (4*n+2)^4), while for k > 1, 2*a(2^k*(2*n+1)) == 2 (mod (2^k*(2*n+1))^4). - Peter Bala, Feb 01 2022

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 3, 209, 40391, 15003009, 9127651499, 8254109243953, 10393834843080975, 17391182043967249409, 37326390852372133364819, 99976027392046047055178001, 326887883645157139828711692503, 1281398359905415379814555044995201, 5932135472283024519893762690145006075
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[2*n, n], {n, 0, 15}]
  • PARI
    a(n) = polchebyshev(2*n, 2, n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevu
    def A349073(n): return chebyshevu(n<<1,n) # Chai Wah Wu, Nov 08 2023

Formula

For n>1, a(n) = ((n + sqrt(n^2-1))^(2*n+1) - (n - sqrt(n^2-1))^(2*n+1)) / (2*sqrt(n^2-1)).
a(n) ~ 2^(2*n) * n^(2*n).

A349072 a(n) = T(n, 3*n), where T(n, x) is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 3, 71, 2889, 164737, 12082575, 1083358151, 114812765781, 14040770918401, 1946133989077851, 301491888156044999, 51624542295308885793, 9681761035138427706241, 1973656779656041723763559, 434528364117341972641648967, 102755067271708508826774929325
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, T(n, k*n) ~ 2^(n-1) * k^n * n^n.

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, 3*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 1, 3*n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevt
    def A349072(n): return chebyshevt(n,3*n) # Chai Wah Wu, Nov 08 2023

Formula

a(n) = cosh(n*arccosh(3*n)).
a(n) = ((3*n + sqrt(9*n^2-1))^n + (3*n - sqrt(9*n^2-1))^n)/2.
a(n) ~ 2^(n-1) * 3^n * n^n.

A349076 a(n) = U(n, 3*n), where U(n, x) is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 6, 143, 5796, 330049, 24192090, 2168392031, 229755926568, 28093745899009, 3893604149949966, 603151411514453999, 103272803655639197580, 19367259480582106560193, 3947962681769909551857186, 869179946261864224288867775, 205535515565731164929726435280
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, U(n, k*n) ~ 2^n * k^n * n^n.

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, 3*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 2, 3*n); \\ Michel Marcus, Nov 07 2021

Formula

a(n) = ((3*n + sqrt(9*n^2-1))^(n+1) - (3*n - sqrt(9*n^2-1))^(n+1)) / (2*sqrt(9*n^2-1)).
a(n) ~ 6^n * n^n.
Showing 1-5 of 5 results.